Descrizione del progetto
Sprigionare la potenza di una progettazione precisa dei prodotti
Lo sviluppo di prodotti che si basano su sistemi di materiali intricati e strutture su scala nanometrica, come le celle solari di terza generazione, è sempre stato un’impresa impegnativa. Le proprietà elettroniche dei semiconduttori bulk, essenziali per questi prodotti, spesso vengono messe in ombra o distorte dalle complesse proprietà dell’interfaccia del materiale, complicando il processo di progettazione. In questo contesto, il progetto MMAMA, finanziato dall’UE, mira a trasformare l’industria manifatturiera europea. Sfruttando la potenza dei microscopi di scansione a microonde, dei risonatori dielettrici e delle simulazioni avanzate, il progetto cerca di misurare e comprendere le proprietà dei materiali e delle interfacce di sistemi materiali complessi e nanostrutture. Questa tecnica fornirà conoscenze fondamentali, che consentiranno di elaborare processi di progettazione efficienti dal punto di vista dei costi. Inoltre, l’ambiente di innovazione aperta del progetto agevolerà l’adozione da parte dell’industria europea.
Obiettivo
Products which require complicated material systems and nanoscale structural organization, e.g. third-generation solar cells, are often difficult to develop. This is because electronic properties of bulk semiconductors are often masked or at least strongly superimposed by material interface properties. Additionally these interface properties are also complex and thus make product design difficult.
This project aims at solving this problem by offering a nanoscale characterization platform for the European manufacturers of coatings, photovoltaic cells, and semi-conductor circuits. It is proposed to use a combination of scanning microwave microscopes, dielectric resonators, and simulation to measure the material and interface properties of complicated material systems and nano-structures. A metrological system of cross-checks between different instruments, models and simulations with associated error bars is indispensable for obtaining trustworthy results.
Scanning microwave measurements will be directly used for three-dimensional characterization of electrical properties of nanostructured semiconductors used in organic and hybrid photovoltaic cells. The objective is to accelerate the development of high efficiency cells and to have measures to predict performances in early stages of prototype production. Where process monitoring of materials with nanostructures is necessary, a dielectric resonator is used to translate insights from scanning microwave microscope measurements to fabrication environments. Such dielectric resonators could be directly integrated in production lines for monitoring thin film deposition processes.
An open innovation environment will make the uptake of the results easier for European industry. A database containing exemplary measurement datasets of scanning microwave microscopes will be available in calibrated and raw versions. Simulation results of tip-semiconductor interactions will be made available on the EMMC Modeling Market Place.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- natural scienceschemical sciencesorganic chemistry
- engineering and technologymaterials engineeringcomposites
- natural sciencesphysical sciencesopticsmicroscopy
- engineering and technologymaterials engineeringcoating and films
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
Programma(i)
Argomento(i)
Invito a presentare proposte
Vedi altri progetti per questo bandoBando secondario
H2020-NMBP-2017-two-stage
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
59000 Lille
Francia