Description du projet
Libérer la puissance d’une conception précise des produits
Le développement de produits reposant sur des systèmes matériels complexes et des structures à l’échelle nanométrique, tels que les cellules solaires de troisième génération, a toujours été un défi. Les propriétés électroniques des semi-conducteurs en vrac, essentielles pour ces produits, sont souvent éclipsées ou déformées par des propriétés d’interface complexes, ce qui complique le processus de conception. Dans ce contexte, le projet MMAMA, financé par l’UE, entend transformer l’industrie manufacturière européenne. En exploitant la puissance des microscopes à micro-ondes à balayage, des résonateurs diélectriques et des simulations avancées, il cherche à mesurer et à comprendre les propriétés des matériaux et des interfaces des systèmes de matériaux complexes et des nanostructures. Cette technique fournira des informations cruciales qui permettront de mettre en place des processus de conception rentables. En outre, l’environnement d’innovation ouverte du projet en facilitera l’adoption par l’industrie européenne.
Objectif
Products which require complicated material systems and nanoscale structural organization, e.g. third-generation solar cells, are often difficult to develop. This is because electronic properties of bulk semiconductors are often masked or at least strongly superimposed by material interface properties. Additionally these interface properties are also complex and thus make product design difficult.
This project aims at solving this problem by offering a nanoscale characterization platform for the European manufacturers of coatings, photovoltaic cells, and semi-conductor circuits. It is proposed to use a combination of scanning microwave microscopes, dielectric resonators, and simulation to measure the material and interface properties of complicated material systems and nano-structures. A metrological system of cross-checks between different instruments, models and simulations with associated error bars is indispensable for obtaining trustworthy results.
Scanning microwave measurements will be directly used for three-dimensional characterization of electrical properties of nanostructured semiconductors used in organic and hybrid photovoltaic cells. The objective is to accelerate the development of high efficiency cells and to have measures to predict performances in early stages of prototype production. Where process monitoring of materials with nanostructures is necessary, a dielectric resonator is used to translate insights from scanning microwave microscope measurements to fabrication environments. Such dielectric resonators could be directly integrated in production lines for monitoring thin film deposition processes.
An open innovation environment will make the uptake of the results easier for European industry. A database containing exemplary measurement datasets of scanning microwave microscopes will be available in calibrated and raw versions. Simulation results of tip-semiconductor interactions will be made available on the EMMC Modeling Market Place.
Champ scientifique
- natural scienceschemical sciencesorganic chemistry
- engineering and technologymaterials engineeringcomposites
- natural sciencesphysical sciencesopticsmicroscopy
- engineering and technologymaterials engineeringcoating and films
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
Programme(s)
Thème(s)
Régime de financement
RIA - Research and Innovation actionCoordinateur
59000 Lille
France