Description du projet
Ouvrir la voie aux matériaux écologiques
Le changement climatique devenant chaque jour plus préoccupant et plus menaçant, les innovateurs de nombreux secteurs et industries s’efforcent de développer et de lancer des produits et des technologies sans danger pour l’environnement. Ces nouvelles technologies impliquent souvent la conception ou l’introduction de composants ou de matériaux innovants susceptibles de révolutionner le secteur concerné en réduisant son impact sur l’environnement. Malheureusement, le processus de fabrication et la chaîne de valorisation peuvent parfois être affectés de manière négative par l’introduction de nouveaux matériaux et composants qui portent atteinte aux écosystèmes. Le projet HIPERMAT, financé par l’UE, entend remédier à ce problème en soutenant les innovateurs dans leurs processus de conception, de suivi, de développement et d’évaluation de nouveaux matériaux et composants et de mesure de leur impact sur les chaînes de valorisation.
Objectif
The main objective of HIPERMAT is the empowering of future low carbon technologies with new materials and components by their enhanced environmental impact reduction across the value chain. At least two new bulk refractory stainless steels, a high entropy alloy and a ceramic coating will be developed through advanced modelling, hidrosolification, LMD and ceramic coatings in new beam and ring prototypes with embedded sensors in a hot stamping furnace. This objective will be achieved by setting a strong basis gathering all manufacturing conditions across the value chain: from the manufacturing of main components (beams and rings) by sand casting and centrifugal casting, the engineering in the furnace construction and the final use of the equipment in hot stamping companies.These data will be used to develop the strategies for materials selection, embedded sensors development, environmental continuous assessment, advanced modelling, data capture and main tests to be performed for material and component validation. After this, materials will be tested for high temperature performance properties such as thermal fatigue, creep, crack growth rate and wear/corrosion. In parallel, new manufacturing technologies such as hidrosolidification, LMD and ceramic coatings will be developed and tested in component like geometries towards an easier and faster approach to final solutions. All these activities will be supported by advanced modelling architecture based on a combination of thermodynamic, thermokinetics, fluids dynamics, heat interchange and metal solidification physics together with model predictive control tools based on in artificial intelligence. The combined effect of material and technologies will be finally tested in component like geometries and, once validated, transferred to prototype components represented by beams and rings that will be integrated in a real furnace together with embedded sensors for continuous monitoring and comparison with standard components.
Champ scientifique
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energy
- natural sciencesphysical sciencesclassical mechanicsfluid mechanicsfluid dynamics
- engineering and technologymaterials engineeringcoating and films
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesmathematicspure mathematicsgeometry
Mots‑clés
Programme(s)
Appel à propositions
Voir d’autres projets de cet appelSous appel
H2020-NMBP-ST-IND-2020-singlestage
Régime de financement
RIA - Research and Innovation actionCoordinateur
48200 Durango
Espagne