Descripción del proyecto
Allanar el camino para los materiales ecológicos
Dado que el cambio climático es cada día más preocupante y peligroso, los innovadores de muchas industrias y sectores se proponen desarrollar e introducir productos y tecnologías que sean seguros para el medio ambiente. Estas nuevas tecnologías implican a menudo el desarrollo y la introducción de nuevos componentes o materiales que podrían revolucionar el sector reduciendo el impacto que este tiene sobre el medio ambiente. Por desgracia, el proceso de fabricación y la cadena de valor pueden verse a veces afectados negativamente por la introducción de nuevos materiales y componentes que dañan los ecosistemas. El proyecto HIPERMAT, financiado con fondos europeos, tiene como objetivo combatir este problema al ayudar a los innovadores en sus procesos de diseño, control, desarrollo y evaluación de nuevos materiales y componentes y su impacto sobre las cadenas de valor.
Objetivo
The main objective of HIPERMAT is the empowering of future low carbon technologies with new materials and components by their enhanced environmental impact reduction across the value chain. At least two new bulk refractory stainless steels, a high entropy alloy and a ceramic coating will be developed through advanced modelling, hidrosolification, LMD and ceramic coatings in new beam and ring prototypes with embedded sensors in a hot stamping furnace. This objective will be achieved by setting a strong basis gathering all manufacturing conditions across the value chain: from the manufacturing of main components (beams and rings) by sand casting and centrifugal casting, the engineering in the furnace construction and the final use of the equipment in hot stamping companies.These data will be used to develop the strategies for materials selection, embedded sensors development, environmental continuous assessment, advanced modelling, data capture and main tests to be performed for material and component validation. After this, materials will be tested for high temperature performance properties such as thermal fatigue, creep, crack growth rate and wear/corrosion. In parallel, new manufacturing technologies such as hidrosolidification, LMD and ceramic coatings will be developed and tested in component like geometries towards an easier and faster approach to final solutions. All these activities will be supported by advanced modelling architecture based on a combination of thermodynamic, thermokinetics, fluids dynamics, heat interchange and metal solidification physics together with model predictive control tools based on in artificial intelligence. The combined effect of material and technologies will be finally tested in component like geometries and, once validated, transferred to prototype components represented by beams and rings that will be integrated in a real furnace together with embedded sensors for continuous monitoring and comparison with standard components.
Ámbito científico
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energy
- natural sciencesphysical sciencesclassical mechanicsfluid mechanicsfluid dynamics
- engineering and technologymaterials engineeringcoating and films
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesmathematicspure mathematicsgeometry
Palabras clave
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-NMBP-ST-IND-2020-singlestage
Régimen de financiación
RIA - Research and Innovation actionCoordinador
48200 Durango
España