Descrizione del progetto
Spianare la strada ai materiali eco-compatibili
Dal momento che il cambiamento climatico diventa ogni giorno più preoccupante e pericoloso, gli innovatori di molte industrie e settori mirano a sviluppare e introdurre prodotti e tecnologie che siano sicuri per l’ambiente. Queste nuove tecnologie spesso comprendono lo sviluppo o l’introduzione di nuovi componenti o materiali che potrebbero rivoluzionare il settore riducendo l’impatto ambientale. Purtroppo, il processo di produzione e la catena del valore possono a volte essere influenzati negativamente dall’introduzione di nuovi materiali e componenti che causano danni agli ecosistemi. Il progetto HIPERMAT, finanziato dall’UE, si propone di contrastare questo problema assistendo gli innovatori nei processi di progettazione, monitoraggio, sviluppo e valutazione di nuovi materiali e componenti e nel loro impatto sulle catene del valore.
Obiettivo
The main objective of HIPERMAT is the empowering of future low carbon technologies with new materials and components by their enhanced environmental impact reduction across the value chain. At least two new bulk refractory stainless steels, a high entropy alloy and a ceramic coating will be developed through advanced modelling, hidrosolification, LMD and ceramic coatings in new beam and ring prototypes with embedded sensors in a hot stamping furnace. This objective will be achieved by setting a strong basis gathering all manufacturing conditions across the value chain: from the manufacturing of main components (beams and rings) by sand casting and centrifugal casting, the engineering in the furnace construction and the final use of the equipment in hot stamping companies.These data will be used to develop the strategies for materials selection, embedded sensors development, environmental continuous assessment, advanced modelling, data capture and main tests to be performed for material and component validation. After this, materials will be tested for high temperature performance properties such as thermal fatigue, creep, crack growth rate and wear/corrosion. In parallel, new manufacturing technologies such as hidrosolidification, LMD and ceramic coatings will be developed and tested in component like geometries towards an easier and faster approach to final solutions. All these activities will be supported by advanced modelling architecture based on a combination of thermodynamic, thermokinetics, fluids dynamics, heat interchange and metal solidification physics together with model predictive control tools based on in artificial intelligence. The combined effect of material and technologies will be finally tested in component like geometries and, once validated, transferred to prototype components represented by beams and rings that will be integrated in a real furnace together with embedded sensors for continuous monitoring and comparison with standard components.
Campo scientifico
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energy
- natural sciencesphysical sciencesclassical mechanicsfluid mechanicsfluid dynamics
- engineering and technologymaterials engineeringcoating and films
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesmathematicspure mathematicsgeometry
Parole chiave
Programma(i)
Invito a presentare proposte
Vedi altri progetti per questo bandoBando secondario
H2020-NMBP-ST-IND-2020-singlestage
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
48200 Durango
Spagna