Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

The ultimate Time scale in Organic Molecular opto-electronics, the ATTOsecond

Descrizione del progetto

Catturare la dinamica ultraveloce degli elettroni per migliorare l’efficienza di conversione dell’energia solare

La generazione di correnti elettriche che alimentano le attività umane in modo pulito e sostenibile è una priorità assoluta per l’umanità. A questo proposito, comprendere la complessità dei processi di trasferimento di elettroni e cariche fotoindotti nei materiali organici è fondamentale per migliorare l’efficienza della conversione energetica nei dispositivi a energia solare. Dato che le prime fasi di questi processi si verificano su scale di tempo ultrarapide (attosecondi), il loro accesso è tecnicamente molto impegnativo. Il progetto TOMATTO, finanziato dall’UE, prevede di osservare più da vicino questo problema attraverso i progressi nella scienza dell’attosecondo e nel campo della sintesi organica e il supporto della modellazione computazionale.

Obiettivo

Photoinduced electron transfer (ET) and charge transfer (CT) processes occurring in organic materials are the cornerstone of technologies aiming at the conversion of solar energy into electrical energy and at its efficient transport. Thus, investigations of ET/CT induced by visible (VIS) and ultraviolet (UV) light are fundamental for the development of more efficient organic opto-electronic materials. The usual strategy to improve efficiency is chemical modification, which is based on chemical intuition and try-and-error approaches, with no control on the ultrafast electron dynamics induced by light. Achieving the latter is not easy, as the natural time scale for electronic motion is the attosecond (10-18 seconds), which is much shorter than the duration of laser pulses produced in femtochemistry laboratories. With femtosecond pulses, one can image and control “slower” processes, such as isomerization, nuclear vibrations, hydrogen migration, etc., which certainly affect ET and CT at “longer” time scales. However, real-time imaging of electronic motion is possibly the only way to fully understand and control the early stages of ET and CT, and by extension the coupled electron-nuclear dynamics that come later and lead (or not) to an efficient electric current. In this project we propose to overcome the fs time-scale bottleneck and get direct information on the early stages of ET/CT generated by VIS and UV light absorption on organic opto-electronic systems by extending the tools of attosecond science beyond the state of the art and combining them with the most advanced methods of organic synthesis and computational modelling. The objective is to provide clear-cut movies of ET/CT with unprecedented time resolution and with the ultimate goal of engineering the molecular response to optimize the light driven processes leading to the desired opto-electronic behavior. To this end, synergic efforts between laser physicists, organic chemists and theoreticians is compulsory.

Meccanismo di finanziamento

ERC-SyG - Synergy grant

Istituzione ospitante

FUNDACION IMDEA NANOCIENCIA
Contribution nette de l'UE
€ 2 133 375,00
Indirizzo
CALLE FARADAY 9 CIUDAD UNIVERSITARIA DE CANTOBLANCO
28049 Madrid
Spagna

Mostra sulla mappa

Regione
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo di attività
Research Organisations
Collegamenti
Costo totale
€ 2 133 375,00

Beneficiari (4)