Descrizione del progetto
Catturare la dinamica ultraveloce degli elettroni per migliorare l’efficienza di conversione dell’energia solare
La generazione di correnti elettriche che alimentano le attività umane in modo pulito e sostenibile è una priorità assoluta per l’umanità. A questo proposito, comprendere la complessità dei processi di trasferimento di elettroni e cariche fotoindotti nei materiali organici è fondamentale per migliorare l’efficienza della conversione energetica nei dispositivi a energia solare. Dato che le prime fasi di questi processi si verificano su scale di tempo ultrarapide (attosecondi), il loro accesso è tecnicamente molto impegnativo. Il progetto TOMATTO, finanziato dall’UE, prevede di osservare più da vicino questo problema attraverso i progressi nella scienza dell’attosecondo e nel campo della sintesi organica e il supporto della modellazione computazionale.
Obiettivo
Photoinduced electron transfer (ET) and charge transfer (CT) processes occurring in organic materials are the cornerstone of technologies aiming at the conversion of solar energy into electrical energy and at its efficient transport. Thus, investigations of ET/CT induced by visible (VIS) and ultraviolet (UV) light are fundamental for the development of more efficient organic opto-electronic materials. The usual strategy to improve efficiency is chemical modification, which is based on chemical intuition and try-and-error approaches, with no control on the ultrafast electron dynamics induced by light. Achieving the latter is not easy, as the natural time scale for electronic motion is the attosecond (10-18 seconds), which is much shorter than the duration of laser pulses produced in femtochemistry laboratories. With femtosecond pulses, one can image and control “slower” processes, such as isomerization, nuclear vibrations, hydrogen migration, etc., which certainly affect ET and CT at “longer” time scales. However, real-time imaging of electronic motion is possibly the only way to fully understand and control the early stages of ET and CT, and by extension the coupled electron-nuclear dynamics that come later and lead (or not) to an efficient electric current. In this project we propose to overcome the fs time-scale bottleneck and get direct information on the early stages of ET/CT generated by VIS and UV light absorption on organic opto-electronic systems by extending the tools of attosecond science beyond the state of the art and combining them with the most advanced methods of organic synthesis and computational modelling. The objective is to provide clear-cut movies of ET/CT with unprecedented time resolution and with the ultimate goal of engineering the molecular response to optimize the light driven processes leading to the desired opto-electronic behavior. To this end, synergic efforts between laser physicists, organic chemists and theoreticians is compulsory.
Campo scientifico
Not validated
Not validated
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-SyG - Synergy grantIstituzione ospitante
28049 Madrid
Spagna