Descripción del proyecto
Capturar la dinámica ultrarrápida de los electrones para mejorar la eficacia de la conversión de la energía solar
La generación de corrientes eléctricas que alimenten las actividades humanas de forma limpia y sostenible es una prioridad absoluta para la humanidad. En este sentido, conocer los entresijos de los procesos de transferencia fotoinducida de los electrones y la carga en la materia orgánica es fundamental para mejorar la eficacia de la conversión energética en los dispositivos de energía solar. Dado que las primeras etapas de estos procesos se producen en escalas de tiempo ultrarrápidas (attosegundos), su acceso es bastante difícil desde un punto de vista técnico. El objetivo del proyecto TOMATTO, financiado con fondos europeos, es profundizar en este problema gracias a los avances en la attociencia y la síntesis orgánica y al apoyo de la modelización informática.
Objetivo
Photoinduced electron transfer (ET) and charge transfer (CT) processes occurring in organic materials are the cornerstone of technologies aiming at the conversion of solar energy into electrical energy and at its efficient transport. Thus, investigations of ET/CT induced by visible (VIS) and ultraviolet (UV) light are fundamental for the development of more efficient organic opto-electronic materials. The usual strategy to improve efficiency is chemical modification, which is based on chemical intuition and try-and-error approaches, with no control on the ultrafast electron dynamics induced by light. Achieving the latter is not easy, as the natural time scale for electronic motion is the attosecond (10-18 seconds), which is much shorter than the duration of laser pulses produced in femtochemistry laboratories. With femtosecond pulses, one can image and control slower processes, such as isomerization, nuclear vibrations, hydrogen migration, etc., which certainly affect ET and CT at longer time scales. However, real-time imaging of electronic motion is possibly the only way to fully understand and control the early stages of ET and CT, and by extension the coupled electron-nuclear dynamics that come later and lead (or not) to an efficient electric current. In this project we propose to overcome the fs time-scale bottleneck and get direct information on the early stages of ET/CT generated by VIS and UV light absorption on organic opto-electronic systems by extending the tools of attosecond science beyond the state of the art and combining them with the most advanced methods of organic synthesis and computational modelling. The objective is to provide clear-cut movies of ET/CT with unprecedented time resolution and with the ultimate goal of engineering the molecular response to optimize the light driven processes leading to the desired opto-electronic behavior. To this end, synergic efforts between laser physicists, organic chemists and theoreticians is compulsory.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
Palabras clave
Programa(s)
Tema(s)
Régimen de financiación
ERC-SyG - Synergy grantInstitución de acogida
28049 Madrid
España