Description du projet
Capturer la dynamique ultrarapide des électrons pour améliorer le rendement de conversion de l’énergie solaire
Produire de manière propre et durable les courants électriques qui alimentent les activités humaines est une priorité absolue pour l’humanité. À cet égard, il est essentiel d’appréhender les subtilités des processus de transfert d’électrons et de charges photo-induits dans les matériaux organiques pour améliorer l’efficacité de la conversion de l’énergie dans les dispositifs d’énergie solaire. Il est techniquement très difficile d’y accéder, dans la mesure où les premières étapes de ces processus se produisent à des échelles de temps ultrarapides (attosecondes). Le projet TOMATTO, financé par l’UE, envisage d’examiner plus attentivement ce problème grâce à des avancées dans la science de l’attoseconde et la synthèse organique, ainsi qu’au soutien de la modélisation informatique.
Objectif
Photoinduced electron transfer (ET) and charge transfer (CT) processes occurring in organic materials are the cornerstone of technologies aiming at the conversion of solar energy into electrical energy and at its efficient transport. Thus, investigations of ET/CT induced by visible (VIS) and ultraviolet (UV) light are fundamental for the development of more efficient organic opto-electronic materials. The usual strategy to improve efficiency is chemical modification, which is based on chemical intuition and try-and-error approaches, with no control on the ultrafast electron dynamics induced by light. Achieving the latter is not easy, as the natural time scale for electronic motion is the attosecond (10-18 seconds), which is much shorter than the duration of laser pulses produced in femtochemistry laboratories. With femtosecond pulses, one can image and control “slower” processes, such as isomerization, nuclear vibrations, hydrogen migration, etc., which certainly affect ET and CT at “longer” time scales. However, real-time imaging of electronic motion is possibly the only way to fully understand and control the early stages of ET and CT, and by extension the coupled electron-nuclear dynamics that come later and lead (or not) to an efficient electric current. In this project we propose to overcome the fs time-scale bottleneck and get direct information on the early stages of ET/CT generated by VIS and UV light absorption on organic opto-electronic systems by extending the tools of attosecond science beyond the state of the art and combining them with the most advanced methods of organic synthesis and computational modelling. The objective is to provide clear-cut movies of ET/CT with unprecedented time resolution and with the ultimate goal of engineering the molecular response to optimize the light driven processes leading to the desired opto-electronic behavior. To this end, synergic efforts between laser physicists, organic chemists and theoreticians is compulsory.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
Mots‑clés
Programme(s)
Thème(s)
Régime de financement
ERC-SyG - Synergy grantInstitution d’accueil
28049 Madrid
Espagne