Projektbeschreibung
Das Erfassen ultraschneller Elektronendynamik für eine verbesserte Sonnenenergieumwandlung
Die Erzeugung sauberen und nachhaltigen elektrischen Stroms, um menschliche Aktivitäten mit Energie zu versorgen, ist eine wichtige Priorität der Menschheit. In diesem Zusammenhang ist ein tiefgreifendes Verständnis der Feinheiten unerlässlich, die dem Vorgang der photoinduzierten Elektronen- und Ladungsübertragung in organischen Materialien zugrunde liegen, um die Effizienz der Energieumwandlung in Solarenergieanlagen zu verbessern. Da die frühen Phasen dieser Vorgänge in ultraschnellen Zeitfenstern (im Attosekundenbereich) stattfinden, ist es technisch äußerst anspruchsvoll, sie zu beobachten. Das EU-finanzierte Projekt TOMATTO plant, dieses Problem genauer unter die Lupe zu nehmen, indem es sich Fortschritte in der Wissenschaft im Attosekundenbereich und der organischen Synthese sowie Unterstützung durch Computermodellierungen zunutze macht.
Ziel
Photoinduced electron transfer (ET) and charge transfer (CT) processes occurring in organic materials are the cornerstone of technologies aiming at the conversion of solar energy into electrical energy and at its efficient transport. Thus, investigations of ET/CT induced by visible (VIS) and ultraviolet (UV) light are fundamental for the development of more efficient organic opto-electronic materials. The usual strategy to improve efficiency is chemical modification, which is based on chemical intuition and try-and-error approaches, with no control on the ultrafast electron dynamics induced by light. Achieving the latter is not easy, as the natural time scale for electronic motion is the attosecond (10-18 seconds), which is much shorter than the duration of laser pulses produced in femtochemistry laboratories. With femtosecond pulses, one can image and control slower processes, such as isomerization, nuclear vibrations, hydrogen migration, etc., which certainly affect ET and CT at longer time scales. However, real-time imaging of electronic motion is possibly the only way to fully understand and control the early stages of ET and CT, and by extension the coupled electron-nuclear dynamics that come later and lead (or not) to an efficient electric current. In this project we propose to overcome the fs time-scale bottleneck and get direct information on the early stages of ET/CT generated by VIS and UV light absorption on organic opto-electronic systems by extending the tools of attosecond science beyond the state of the art and combining them with the most advanced methods of organic synthesis and computational modelling. The objective is to provide clear-cut movies of ET/CT with unprecedented time resolution and with the ultimate goal of engineering the molecular response to optimize the light driven processes leading to the desired opto-electronic behavior. To this end, synergic efforts between laser physicists, organic chemists and theoreticians is compulsory.
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-SyG - Synergy grantGastgebende Einrichtung
28049 Madrid
Spanien