Descrizione del progetto
Polimeri morbidi dalla forma cangiante danno una spinta nella giusta direzione alle cellule
Gli organismi viventi rispondono in modo intelligente a una varietà di stimoli, non ultimi quelli meccanici. Gli stimoli meccanici sono importanti modulatori della crescita, dello sviluppo e della riparazione dei tessuti, e il loro potenziale d’uso nelle terapie è un tema sentito nel campo della ricerca e dello sviluppo. I polimeri magnetoattivi (MAP, Magneto-active polymers), compositi morbidi che mostrano trasformazioni modulabili nella forma indotte dalla magnetizzazione, sono qualificati in modo unico per spingere adeguatamente le strutture biologiche verso processi di crescita e riparazione. Tuttavia, per controllarli meglio, abbiamo bisogno di comprenderne più a fondo la fisica sottostante. Il progetto 4D-BIOMAP, finanziato dall’UE, sta usando una potente stampa 3D per creare MAP e caratterizzarli in applicazioni critiche legate al funzionamento del sistema nervoso.
Obiettivo
MAPs are polymer-based composites that respond to magnetic fields with large deformation or tuneable mechanical properties. I aim to apply heterogeneous 3D printed MAPs as modifiable substrates to support biological structures which can have their deformation state and stiffness controlled by the external application of magnetic stimuli. Such mechanical stimulation has an important role on biological structures leading to alterations in functional responses, morphological changes and activation of growth or healing processes. Current bottlenecks preventing progress in this field are a lack of: a) appropriate experimental methodologies to enable characterisation of the behaviour of these materials; b) fundamental theoretical underpinnings to support the design and application of these new materials. The first step is to undertake in depth characterisation and assessment of 4D printed MAPs to create a detailed understanding of the underlying physics controlling the interactions between the polymeric matrices and embedded magnetic particles during application of mechanical and/or magnetic loadings. I will then culture biological structures on the novel 4D printed MAPs to create a ‘designed’ biostructure with specified and controllable responses to a given magnetic stimulus. These novel biostructures will be assessed using three applications: a) astrocyte cellular networks, b) neuronal circuits and c) astrocyte-neuronal networks. The evaluation of cellular damage, morphological and physiological alterations will validate the performance of the new biostructures and also contribute new understanding to the effects of deformation and stiffness gradients during glial scarring on physiological functions of central nervous system cells. The resulting deep understanding of magneto-mechanics of MAPs and their further development for controllable stimulation devices, will enable the international consolidation of my research group within the mechanics and bioengineering fields.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- natural sciencesbiological sciencesneurobiology
- engineering and technologymaterials engineeringcomposites
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationstelecommunications networksmobile network
- natural scienceschemical sciencespolymer sciences
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-STG - Starting GrantIstituzione ospitante
28903 Getafe (Madrid)
Spagna