Descripción del proyecto
Polímeros blandos que cambian de forma que guían a las células hacia la dirección correcta
Los organismos vivos responden con inteligencia a distintos estímulos, entre los que se encuentran los mecánicos. Las señales mecánicas son importantes moduladores del crecimiento, el desarrollo y la reparación de tejidos, y los beneficios de su posible uso terapéutico son un tema candente en la investigación y el desarrollo. Los polímeros magnetoactivos (MAP, por sus siglas en inglés), compuestos blandos cuya transformación puede modularse mediante imanes, son idóneos para dirigir adecuadamente las estructuras biológicas hacia los procesos de crecimiento y reparación. Sin embargo, para controlarlos mejor, es necesario conocer mejor la física por la que se rigen. El proyecto 4D-BIOMAP, financiado con fondos europeos, utiliza una potente técnica de impresión 3D para crear MAP y caracterizarlos en aplicaciones críticas relacionadas con el funcionamiento del sistema nervioso.
Objetivo
MAPs are polymer-based composites that respond to magnetic fields with large deformation or tuneable mechanical properties. I aim to apply heterogeneous 3D printed MAPs as modifiable substrates to support biological structures which can have their deformation state and stiffness controlled by the external application of magnetic stimuli. Such mechanical stimulation has an important role on biological structures leading to alterations in functional responses, morphological changes and activation of growth or healing processes. Current bottlenecks preventing progress in this field are a lack of: a) appropriate experimental methodologies to enable characterisation of the behaviour of these materials; b) fundamental theoretical underpinnings to support the design and application of these new materials. The first step is to undertake in depth characterisation and assessment of 4D printed MAPs to create a detailed understanding of the underlying physics controlling the interactions between the polymeric matrices and embedded magnetic particles during application of mechanical and/or magnetic loadings. I will then culture biological structures on the novel 4D printed MAPs to create a ‘designed’ biostructure with specified and controllable responses to a given magnetic stimulus. These novel biostructures will be assessed using three applications: a) astrocyte cellular networks, b) neuronal circuits and c) astrocyte-neuronal networks. The evaluation of cellular damage, morphological and physiological alterations will validate the performance of the new biostructures and also contribute new understanding to the effects of deformation and stiffness gradients during glial scarring on physiological functions of central nervous system cells. The resulting deep understanding of magneto-mechanics of MAPs and their further development for controllable stimulation devices, will enable the international consolidation of my research group within the mechanics and bioengineering fields.
Ámbito científico
Not validated
Not validated
- natural sciencesbiological sciencesneurobiology
- engineering and technologymaterials engineeringcomposites
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationstelecommunications networksmobile network
- natural scienceschemical sciencespolymer sciences
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
28903 Getafe (Madrid)
España