Description du projet
Des polymères souples changeant de forme poussent les cellules dans la bonne direction
Les organismes vivants répondent de manière intelligente à divers stimuli, dont les plus importants sont les stimuli mécaniques. Les signaux mécaniques sont d’importants modulateurs de la croissance, du développement et de la réparation des tissus, et leur utilisation potentielle en thérapeutique est un passionnant sujet de recherche et de développement. Les polymères magnéto-actifs (MAP), des composites souples qui manifestent des transformations de forme réglables induites par la magnétisation, sont particulièrement qualifiés pour orienter de manière appropriée les structures biologiques vers des processus de croissance et de réparation. Toutefois, si nous voulons mieux les contrôler, nous devons mieux comprendre leur physique sous-jacente. Le projet 4D-BIOMAP, financé par l’UE, utilise une impression 3D puissante pour créer des MAP et les caractériser dans des applications critiques liées au fonctionnement du système nerveux.
Objectif
MAPs are polymer-based composites that respond to magnetic fields with large deformation or tuneable mechanical properties. I aim to apply heterogeneous 3D printed MAPs as modifiable substrates to support biological structures which can have their deformation state and stiffness controlled by the external application of magnetic stimuli. Such mechanical stimulation has an important role on biological structures leading to alterations in functional responses, morphological changes and activation of growth or healing processes. Current bottlenecks preventing progress in this field are a lack of: a) appropriate experimental methodologies to enable characterisation of the behaviour of these materials; b) fundamental theoretical underpinnings to support the design and application of these new materials. The first step is to undertake in depth characterisation and assessment of 4D printed MAPs to create a detailed understanding of the underlying physics controlling the interactions between the polymeric matrices and embedded magnetic particles during application of mechanical and/or magnetic loadings. I will then culture biological structures on the novel 4D printed MAPs to create a ‘designed’ biostructure with specified and controllable responses to a given magnetic stimulus. These novel biostructures will be assessed using three applications: a) astrocyte cellular networks, b) neuronal circuits and c) astrocyte-neuronal networks. The evaluation of cellular damage, morphological and physiological alterations will validate the performance of the new biostructures and also contribute new understanding to the effects of deformation and stiffness gradients during glial scarring on physiological functions of central nervous system cells. The resulting deep understanding of magneto-mechanics of MAPs and their further development for controllable stimulation devices, will enable the international consolidation of my research group within the mechanics and bioengineering fields.
Champ scientifique
- natural sciencesbiological sciencesneurobiology
- engineering and technologymaterials engineeringcomposites
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationstelecommunications networksmobile network
- natural scienceschemical sciencespolymer sciences
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
28903 Getafe (Madrid)
Espagne