Projektbeschreibung
Weiche, formverändernde Polymere geben Zellen einen Schub in die richtige Richtung
Lebende Organismen reagieren intelligent auf eine Vielzahl von Reizen, nicht zuletzt auf mechanische. Mechanische Reize sind wichtige Modulatoren von Wachstum, Entwicklung und Gewebereparatur, und ihr Potenzial für den Einsatz in der Therapeutik ist ein heißes Thema der Forschung und Entwicklung. Magnetoaktive Polymere, weiche Verbundwerkstoffe, die abstimmbare magnetisierungsinduzierte Formtransformationen aufweisen, sind in einzigartiger Weise geeignet, biologische Strukturen angemessen auf Wachstums- und Reparaturprozesse zu lenken. Um sie jedoch besser kontrollieren zu können, benötigen wir ein tieferes Verständnis ihrer zugrunde liegenden Physik. Das EU-finanzierte Projekt 4D-BIOMAP verwendet leistungsstarken 3D-Druck, um magnetoaktive Polymere zu erstellen und sie in kritischen Anwendungen im Zusammenhang mit der Funktion des Nervensystems zu charakterisieren.
Ziel
MAPs are polymer-based composites that respond to magnetic fields with large deformation or tuneable mechanical properties. I aim to apply heterogeneous 3D printed MAPs as modifiable substrates to support biological structures which can have their deformation state and stiffness controlled by the external application of magnetic stimuli. Such mechanical stimulation has an important role on biological structures leading to alterations in functional responses, morphological changes and activation of growth or healing processes. Current bottlenecks preventing progress in this field are a lack of: a) appropriate experimental methodologies to enable characterisation of the behaviour of these materials; b) fundamental theoretical underpinnings to support the design and application of these new materials. The first step is to undertake in depth characterisation and assessment of 4D printed MAPs to create a detailed understanding of the underlying physics controlling the interactions between the polymeric matrices and embedded magnetic particles during application of mechanical and/or magnetic loadings. I will then culture biological structures on the novel 4D printed MAPs to create a ‘designed’ biostructure with specified and controllable responses to a given magnetic stimulus. These novel biostructures will be assessed using three applications: a) astrocyte cellular networks, b) neuronal circuits and c) astrocyte-neuronal networks. The evaluation of cellular damage, morphological and physiological alterations will validate the performance of the new biostructures and also contribute new understanding to the effects of deformation and stiffness gradients during glial scarring on physiological functions of central nervous system cells. The resulting deep understanding of magneto-mechanics of MAPs and their further development for controllable stimulation devices, will enable the international consolidation of my research group within the mechanics and bioengineering fields.
Wissenschaftliches Gebiet
- natural sciencesbiological sciencesneurobiology
- engineering and technologymaterials engineeringcomposites
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationstelecommunications networksmobile network
- natural scienceschemical sciencespolymer sciences
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-STG - Starting GrantGastgebende Einrichtung
28903 Getafe (Madrid)
Spanien