Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

End-to-end hardware implementation of Artificial Neural Networks for Edge Computing in Autonomous Vehicles

Descrizione del progetto

Un passo in avanti artificiale per la tecnologia dei veicoli autonomi

Dati i recenti progressi dell’apprendimento artificiale, molti cercano di utilizzare questa tecnologia per altri campi. Uno dei campi che mostra un grande potenziale in questo senso è il settore dei veicoli autonomi. Queste automobili senza conducente potrebbero fornire grandi vantaggi al settore dei trasporti, riducendo il traffico, gli incidenti, i costi di viaggio e il tempo. Sfortunatamente, le attività correnti di apprendimento profondo necessarie affinché i veicoli autonomi funzionino in modo efficiente e sicuro consumano in modo eccessivo l’energia e il processore per i modelli attuali. Il progetto Hailo-8, finanziato dall’UE, si propone di sviluppare un’alternativa, denominata proprio Hailo-8, che garantirebbe un minor consumo di spazio, energia e costi, consentendo anche il progresso delle tecnologie per veicoli autonomi.

Obiettivo

Autonomous Vehicles (AVs) present a great opportunity for the transport sector to reduce accidents, traffic congestion, time of travel and travel costs. However, for effectiveness, AVs need to process large amounts of data collected by the vehicle sensors at the edge, which requires a very powerful processor capable of computing Deep Learning (DL) tasks. This is currently lacking in the market as evidenced by the inefficiencies in current processors in processing big data at the edge in real time. Most processors for edge computing are currently reliant on CPU and GPU architectures which are challenged by Deep Learning tasks. The processors have low computational capabilities which increases their latencies (processing times). This leads to heat dissipation problems and high power consumption. The processors are also rigged with complexities that raise development costs and the price of the processors. The processors are also not easily scalable, which makes it difficult for miniaturisation.

Hailo-Tech has developed Hailo-8, which is specifically designed to optimise Edge Computing processor capabilities to allow neural network deployment through enhancing processor computational efficiency, resulting in higher capacity within the constraints of an edge device. Hailo-8 meets the industry need of optimised edge data processing by providing a first-class ASIC micro-processor that is based on a completely new micro-architecture that can execute neural network based machine learning algorithms. Hailo-8 will provide AV owners with high computational efficiency (x1,000 compared to alternative solutions), giving an immediate response after data processing. Hailo-8 increases power efficiency by a factor of 100 and has better area and cost efficiency by a factor of 10 compared to other processors. To bring the disruptive device successfully to the market we need to further perform some technical and commercial activities which required an investment of €2.993,750 M.

Invito a presentare proposte

H2020-EIC-SMEInst-2018-2020

Vedi altri progetti per questo bando

Bando secondario

H2020-SMEInst-2018-2020-2

Meccanismo di finanziamento

SME-2 - SME instrument phase 2

Coordinatore

HAILO TECHNOLOGIES LTD
Contribution nette de l'UE
€ 2 095 625,00
Indirizzo
94 YIGAL ALON
6789139 TEL-AVIV
Israele

Mostra sulla mappa

PMI

L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.

Tipo di attività
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Collegamenti
Costo totale
€ 2 993 750,00