Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

End-to-end hardware implementation of Artificial Neural Networks for Edge Computing in Autonomous Vehicles

Descripción del proyecto

Un paso artificial por delante para la tecnología de los vehículos autónomos

A raíz de los recientes avances en el campo del aprendizaje artificial, muchos tratan de utilizar esta tecnología en otros ámbitos. Uno de los campos que muestra un gran potencial es el sector de los vehículos autónomos (VA). Estos coches sin conductor podrían proporcionar ventajas importantes para el sector de los transportes, ya que permiten reducir el tráfico, los accidentes, así como los costes y tiempos de desplazamiento. Por desgracia, las tareas actuales de aprendizaje profundo necesarias para que los VA funcionen de forma eficaz y segura consumen demasiada energía y potencia de procesador para los modelos actuales. El proyecto Hailo-8, financiado con fondos europeos, se propone desarrollar una alternativa llamada Hailo-8 que consumiría menos energía, ocuparía menos espacio y engendraría menos costes a la vez que permitiría el avance de las tecnologías para VA.

Objetivo

Autonomous Vehicles (AVs) present a great opportunity for the transport sector to reduce accidents, traffic congestion, time of travel and travel costs. However, for effectiveness, AVs need to process large amounts of data collected by the vehicle sensors at the edge, which requires a very powerful processor capable of computing Deep Learning (DL) tasks. This is currently lacking in the market as evidenced by the inefficiencies in current processors in processing big data at the edge in real time. Most processors for edge computing are currently reliant on CPU and GPU architectures which are challenged by Deep Learning tasks. The processors have low computational capabilities which increases their latencies (processing times). This leads to heat dissipation problems and high power consumption. The processors are also rigged with complexities that raise development costs and the price of the processors. The processors are also not easily scalable, which makes it difficult for miniaturisation.

Hailo-Tech has developed Hailo-8, which is specifically designed to optimise Edge Computing processor capabilities to allow neural network deployment through enhancing processor computational efficiency, resulting in higher capacity within the constraints of an edge device. Hailo-8 meets the industry need of optimised edge data processing by providing a first-class ASIC micro-processor that is based on a completely new micro-architecture that can execute neural network based machine learning algorithms. Hailo-8 will provide AV owners with high computational efficiency (x1,000 compared to alternative solutions), giving an immediate response after data processing. Hailo-8 increases power efficiency by a factor of 100 and has better area and cost efficiency by a factor of 10 compared to other processors. To bring the disruptive device successfully to the market we need to further perform some technical and commercial activities which required an investment of €2.993,750 M.

Convocatoria de propuestas

H2020-EIC-SMEInst-2018-2020

Consulte otros proyectos de esta convocatoria

Convocatoria de subcontratación

H2020-SMEInst-2018-2020-2

Régimen de financiación

SME-2 - SME instrument phase 2

Coordinador

HAILO TECHNOLOGIES LTD
Aportación neta de la UEn
€ 2 095 625,00
Dirección
94 YIGAL ALON
6789139 TEL-AVIV
Israel

Ver en el mapa

Pyme

Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.

Tipo de actividad
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Enlaces
Coste total
€ 2 993 750,00