Project description
An artificial step ahead for autonomous vehicle technology
With the recent advancement of artificial learning, many seek to utilise this technology for other fields. One of the fields that shows great potential for this is the autonomous vehicle (AV) industry. These driverless cars could provide great advantages to the transportation sector, reducing traffic, accidents, travel costs and time. Unfortunately, current deep learning tasks necessary for AVs to run efficiently and safely are too power- and processor-consuming for current models. The EU-funded Hailo-8 project aims to develop an alternative called Hailo-8 that would be less space-, power- and cost-consuming while also allowing for the advancement of AV technologies.
Objective
Autonomous Vehicles (AVs) present a great opportunity for the transport sector to reduce accidents, traffic congestion, time of travel and travel costs. However, for effectiveness, AVs need to process large amounts of data collected by the vehicle sensors at the edge, which requires a very powerful processor capable of computing Deep Learning (DL) tasks. This is currently lacking in the market as evidenced by the inefficiencies in current processors in processing big data at the edge in real time. Most processors for edge computing are currently reliant on CPU and GPU architectures which are challenged by Deep Learning tasks. The processors have low computational capabilities which increases their latencies (processing times). This leads to heat dissipation problems and high power consumption. The processors are also rigged with complexities that raise development costs and the price of the processors. The processors are also not easily scalable, which makes it difficult for miniaturisation.
Hailo-Tech has developed Hailo-8, which is specifically designed to optimise Edge Computing processor capabilities to allow neural network deployment through enhancing processor computational efficiency, resulting in higher capacity within the constraints of an edge device. Hailo-8 meets the industry need of optimised edge data processing by providing a first-class ASIC micro-processor that is based on a completely new micro-architecture that can execute neural network based machine learning algorithms. Hailo-8 will provide AV owners with high computational efficiency (x1,000 compared to alternative solutions), giving an immediate response after data processing. Hailo-8 increases power efficiency by a factor of 100 and has better area and cost efficiency by a factor of 10 compared to other processors. To bring the disruptive device successfully to the market we need to further perform some technical and commercial activities which required an investment of €2.993,750 M.
Fields of science
Not validated
Not validated
- engineering and technologymechanical engineeringvehicle engineeringautomotive engineeringautonomous vehicles
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarecomputer processors
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
- natural sciencescomputer and information sciencesdata sciencedata processing
- natural sciencescomputer and information sciencesartificial intelligencecomputational intelligence
Programme(s)
Funding Scheme
SME-2 - SME instrument phase 2Coordinator
6789139 TEL-AVIV
Israel
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.