Projektbeschreibung
Hochleistungsrechnen unterstützt Anwendungen für Luftfahrt, Klima und Wetter sowie Energie
Um industriellen, technologischen und wissenschaftlichen Herausforderungen auch in Zukunft begegnen zu können und mit der rasanten Geschwindigkeit Schritt zu halten, mit der Daten bei wissenschaftlichen Versuchen und großen Simulationen erzeugt werden (d. b. Multiphysik, Klima- und Wettervorhersagen), investiert die EU in Supercomputer und Technologien. Das EU-finanzierte Projekt ACROSS wirkt an der Gestaltung und Entwicklung einer Plattform mit, die Hochleistungsrechnen, Big Data und künstliche Intelligenz (KI) vereint, um Anwendungen im Bereich von Luftfahrt, Klima und Wetter sowie Energie zu unterstützen. ACROSS kombiniert traditionelle Hochleistungsrechenverfahren mit KI (ML/DL) und Big-Data-Analyseverfahren zur Verbesserung der Ergebnisse von Anwendungstestfällen. ACROSS fördert die Kooperation mit anderen EU-Initiativen und zukünftigen EuroHPC-Projekten, um die Übertragung des Rechnens auf Exascale-Ebene für Testfälle von Interessengruppen zu unterstützen.
Ziel
Supercomputers have been extensively used to solve complex scientific and engineering problems, boosting the capability to design more efficient systems. The pace at which data are generated by scientific experiments and large simulations (e.g. multiphysics, climate, weather forecast, etc.) poses new challenges in terms of capability of efficiently and effectively analysing massive data sets. Artificial Intelligence, and more specifically Machine Learning (ML) and Deep Learning (DL) recently gained momentum for boosting simulations’ speed. ML/DL techniques are part of simulation processes, used to early detect patterns of interests from less accurate simulation results. To address these challenges, the ACROSS project will co-design and develop an HPC, BD, and Artificial Intelligence (AI) convergent platform, supporting applications in the Aeronautics, Climate and Weather, and Energy domains. To this end, ACROSS will leverage on next generation of pre-exascale infrastructures, still being ready for exascale systems, and on effective mechanisms to easily describe and manage complex workflows in these three domains. Energy efficiency will be achieved by massive use of specialized hardware accelerators, monitoring running systems and applying smart mechanisms of scheduling jobs. ACROSS will combine traditional HPC techniques with AI (specifically ML/DL) and BD analytic techniques to enhance the application test case outcomes (e.g. improve the existing operational system for global numerical weather prediction, climate simulations, develop an environment for user-defined in-situ data processing, improve and innovate the existing turbine aero design system, speed up the design process, etc.). The performance of ML/DL will be accelerated by using dedicated hardware devices. ACROSS will promote cooperation with other EU initiatives (e.g. BDVA, EPI) and future EuroHPC projects to foster the adoption of exascale-level computing among test case domain stakeholders.
Wissenschaftliches Gebiet
Not validated
Not validated
- natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorology
- natural sciencescomputer and information sciencesdata sciencebig data
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwaresupercomputers
- natural sciencescomputer and information sciencesdata sciencedata processing
Schlüsselbegriffe
Programm/Programme
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
IA - Innovation actionKoordinator
10138 Torino
Italien