Project description
HPC supporting applications in aeronautics, climate and weather, and energy domains
To stay ahead in addressing industrial, technological and scientific challenges and keep up with the fast pace at which data are generated by scientific experiments and large simulations (i.e. multiphysics, climate and weather predictions), the EU is investing in supercomputers and technologies. The EU-funded ACROSS project will co-design and develop a high-performance computing (HPC), big data (BD) and artificial intelligence (AI) convergent platform, supporting applications in the aeronautics, climate and weather, and energy domains. ACROSS will combine traditional HPC techniques with AI (ML/DL) and BD analytic techniques to enhance the application test case outcomes. ACROSS will promote cooperation with other EU initiatives and future EuroHPC projects to foster the adoption of exascale-level computing among test case domain stakeholders.
Objective
Supercomputers have been extensively used to solve complex scientific and engineering problems, boosting the capability to design more efficient systems. The pace at which data are generated by scientific experiments and large simulations (e.g. multiphysics, climate, weather forecast, etc.) poses new challenges in terms of capability of efficiently and effectively analysing massive data sets. Artificial Intelligence, and more specifically Machine Learning (ML) and Deep Learning (DL) recently gained momentum for boosting simulations’ speed. ML/DL techniques are part of simulation processes, used to early detect patterns of interests from less accurate simulation results. To address these challenges, the ACROSS project will co-design and develop an HPC, BD, and Artificial Intelligence (AI) convergent platform, supporting applications in the Aeronautics, Climate and Weather, and Energy domains. To this end, ACROSS will leverage on next generation of pre-exascale infrastructures, still being ready for exascale systems, and on effective mechanisms to easily describe and manage complex workflows in these three domains. Energy efficiency will be achieved by massive use of specialized hardware accelerators, monitoring running systems and applying smart mechanisms of scheduling jobs. ACROSS will combine traditional HPC techniques with AI (specifically ML/DL) and BD analytic techniques to enhance the application test case outcomes (e.g. improve the existing operational system for global numerical weather prediction, climate simulations, develop an environment for user-defined in-situ data processing, improve and innovate the existing turbine aero design system, speed up the design process, etc.). The performance of ML/DL will be accelerated by using dedicated hardware devices. ACROSS will promote cooperation with other EU initiatives (e.g. BDVA, EPI) and future EuroHPC projects to foster the adoption of exascale-level computing among test case domain stakeholders.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorology
- natural sciencescomputer and information sciencesdata sciencebig data
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwaresupercomputers
- natural sciencescomputer and information sciencesdata sciencedata processing
Keywords
Programme(s)
Funding Scheme
IA - Innovation actionCoordinator
10138 Torino
Italy