Descrizione del progetto
La modellizzazione dell’elettrofisiologia cardiaca
L’aritmia cardiaca, il battito irregolare del cuore, è una causa diffusa di morte e disabilità. Per studiare il sistema elettrico complesso che è alla base di questa aritmia, vengono ampiamente usati modelli matematici. Gli scienziati del progetto MICROCARD, finanziato dall’UE, vogliono costruire un erede di questi modelli elettrofisiologici cardiaci che rappresenti le singole cellule e le loro interconnessioni. Tuttavia, ciò aumenta notevolmente la dimensione e la complessità delle simulazioni e richiede calcoli su scala exa. MICROCARD svilupperà una sofisticata piattaforma di simulazione che è adatta ai computer su scala exa e che fornisce informazioni attendibili sull’elettrofisiologia del cuore e su sistemi biologici analoghi quali nervi, muscoli, occhi e cervello.
Obiettivo
Cardiovascular diseases are the most frequent cause of death worldwide and half of these deaths are due to cardiac arrhythmia, a disorder of the heart's electrical synchronization system. Numerical models of this complex system are highly sophisticated and widely used, but to match observations in aging and diseased hearts they need to move from a continuum approach to a representation of individual cells and their interconnections. This implies a different, harder numerical problem and a 10,000-fold increase in problem size. Exascale computers will be needed to run such models.
We propose to develop an exascale application platform for cardiac electrophysiology simulations that is usable for cell-by-cell simulations. The platform will be co-designed by HPC experts, numerical scientists, biomedical engineers, and biomedical scientists, from academia and industry. We will develop, in concert, numerical schemes suitable for exascale parallelism, problem-tailored linear-system solvers and preconditioners, and a compiler to translate high-level model descriptions into optimized, energy-efficient system code for heterogeneous computing systems. The code will be parallelized with a recently developed runtime system that is resilient to hardware failures and will use an energy-aware task placement strategy.
The platform will be applied in real-life use cases with high impact in the biomedical domain and will showcase HPC in this area where it is painfully underused. It will be made accessible for a wide range of users both as code and through a web interface.
We will further employ our HPC and biomedical expertise to accelerate the development of parallel segmentation and (re)meshing software, necessary to create the extremely large and complex meshes needed from available large volumes of microscopy data.
The platform will be adaptable to similar biological systems such as nerves, and components of the platform will be reusable in a wide range of applications.
Campo scientifico
- medical and health sciencesclinical medicinecardiologycardiovascular diseasescardiac arrhythmia
- natural sciencescomputer and information sciencessoftwaresoftware applicationssystem software
- natural sciencesphysical sciencesopticsmicroscopy
- natural sciencescomputer and information sciencesartificial intelligenceexpert systems
Parole chiave
Programma(i)
Meccanismo di finanziamento
IA - Innovation actionCoordinatore
33000 Bordeaux
Francia