Description du projet
Modéliser l’électrophysiologie du cœur
L’arythmie cardiaque, le battement irrégulier du cœur, est une cause fréquente de décès et de handicap. Pour étudier le système électrique complexe inhérent à ces arythmies, des modèles mathématiques sont largement utilisés. Les scientifiques du projet MICROCARD, financé par l’UE, souhaitent créer un successeur à ces modèles d’électrophysiologie cardiaque qui puisse représenter des cellules individuelles et leurs interconnexions. Toutefois, ce processus augmente considérablement la taille et la complexité des simulations et nécessite un calcul à l’échelle exa. MICROCARD développera une plateforme de simulation élaborée adaptée aux supercalculateurs exaflopiques et qui fournit des données fiables sur l’électrophysiologie du cœur et des systèmes biologiques similaires comme les nerfs, les muscles, l’œil et le cerveau.
Objectif
Cardiovascular diseases are the most frequent cause of death worldwide and half of these deaths are due to cardiac arrhythmia, a disorder of the heart's electrical synchronization system. Numerical models of this complex system are highly sophisticated and widely used, but to match observations in aging and diseased hearts they need to move from a continuum approach to a representation of individual cells and their interconnections. This implies a different, harder numerical problem and a 10,000-fold increase in problem size. Exascale computers will be needed to run such models.
We propose to develop an exascale application platform for cardiac electrophysiology simulations that is usable for cell-by-cell simulations. The platform will be co-designed by HPC experts, numerical scientists, biomedical engineers, and biomedical scientists, from academia and industry. We will develop, in concert, numerical schemes suitable for exascale parallelism, problem-tailored linear-system solvers and preconditioners, and a compiler to translate high-level model descriptions into optimized, energy-efficient system code for heterogeneous computing systems. The code will be parallelized with a recently developed runtime system that is resilient to hardware failures and will use an energy-aware task placement strategy.
The platform will be applied in real-life use cases with high impact in the biomedical domain and will showcase HPC in this area where it is painfully underused. It will be made accessible for a wide range of users both as code and through a web interface.
We will further employ our HPC and biomedical expertise to accelerate the development of parallel segmentation and (re)meshing software, necessary to create the extremely large and complex meshes needed from available large volumes of microscopy data.
The platform will be adaptable to similar biological systems such as nerves, and components of the platform will be reusable in a wide range of applications.
Champ scientifique
- medical and health sciencesclinical medicinecardiologycardiovascular diseasescardiac arrhythmia
- natural sciencescomputer and information sciencessoftwaresoftware applicationssystem software
- natural sciencesphysical sciencesopticsmicroscopy
- natural sciencescomputer and information sciencesartificial intelligenceexpert systems
Programme(s)
Régime de financement
IA - Innovation actionCoordinateur
33000 Bordeaux
France