Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

A multimodal AI-based toolbox and an interoperable health imaging repository for the empowerment of imaging analysis related to the diagnosis, prediction and follow-up of cancer

Description du projet

Améliorer le diagnostic et la prédiction du cancer grâce à l’intelligence artificielle

Bien que l’intelligence artificielle (IA) et l’apprentissage automatique (AA) fournissent des opportunités sans précédent pour améliorer la détection du cancer, différents défis techniques ainsi qu’un manque de disponibilité des données entravent leur utilisation. Le projet INCISIVE, financé par l’UE, entend développer une boîte à outils pour améliorer la précision, la spécificité et la sensibilité des méthodes d’imagerie du cancer actuelles. L’idée consiste à générer un répertoire paneuropéen d’images médicales susceptible d’être utilisé pour la formation basée sur l’AA pour différents types de cancer. Les résultats du projet contribueront à prédire avec précision la propagation de la tumeur, l’évolution et la rechute, en plus d’aider à stratifier les patients.

Objectif

The increasing amount and availability of collected data (cancer imaging) and the development of novel technological tools based on Artificial Intelligence (AI) and Machine Learning (ML), provide unprecedented opportunities for better cancer detection and classification, image optimization, radiation reduction, and clinical workflow enhancement. The INCISIVE project aims to address three major open challenges in order to explore the full potential of AI solutions in cancer imaging: (1) AI challenges unique to medical imaging, (2) Image labelling and annotation and (3) Data availability and sharing. In order to do that INCISIVE plans to develop and validate: (1) an AI-based toolbox that enhances the accuracy, specificity, sensitivity, interpretability and cost-effectiveness of existing cancer imaging methods, (2) an automated-ML based annotation mechanism to rapidly produce training data for machine learning research and (3) a pan-European repository federated repository of medical images, that will enable the secure donation and sharing of data in compliance with ethical, legal and privacy demands, increasing accessibility to datasets and enabling experimentation of AI-based solutions.
The INCISIVE models and analytics will utilize various cancer imaging scans, biological data and EHRs, and will be trained with 1 PB of available data provided by 8 partners within the project. INCISIVE solution will be investigated in four validation studies for Breast, Prostate, Colorectal and Lung Cancer, taking place in 8 pilot sites, from 5 countries (Cyprus, Greece, Italy, Serbia and Spain), with participation of at least 2,600 patients and a total duration of 1.5 year. INCISIVE moves beyond the state of the art, by improving sensitivity and specificity of lower cost scanning methods, accurately predicting the tumor spread, evolution and relapse, enhancing interpretability of results and “democratizing” imaging data.

Appel à propositions

H2020-SC1-FA-DTS-2018-2020

Voir d’autres projets de cet appel

Sous appel

H2020-SC1-FA-DTS-2019-1

Coordinateur

MAGGIOLI SPA
Contribution nette de l'UE
€ 702 500,00
Adresse
VIA DEL CARPINO 8
47822 Santarcangelo Di Romagna
Italie

Voir sur la carte

Région
Nord-Est Emilia-Romagna Rimini
Type d’activité
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Liens
Coût total
€ 702 500,00

Participants (28)