Descrizione del progetto
Stabilità del catalizzatore per un’elevata corrente di svolgimento dell’idrogeno
L’idrogeno è una potenziale alternativa ai combustibili fossili e il modo migliore per ottenerlo è la scissione elettrolitica dell’acqua sfruttando fonti di energia rinnovabile. Gli elettrocatalizzatori a reazione con svolgimento d’idrogeno, come il platino, sono i più attivi, ma anche costosi e non resistenti nel tempo a causa dell’accumulo di nanoparticelle metalliche sul supporto. Il progetto HyCat, finanziato dall’UE, propone soluzioni per ridurre la quantità di metallo nobile, al fine di garantire la stabilità del catalizzatore impedendo l’aggregazione. La soluzione si baserà su un catalizzatore a reazione con svolgimento d’idrogeno altamente attivo e stabile composto da uno strato poroso di rame e platino nanostrutturato, cresciuto direttamente su un collettore di corrente in titanio mediante elettrodeposizione lenta in situ di platino. Questo catalizzatore fornisce un’elevata corrente di svolgimento dell’idrogeno e stabilità a lungo termine in condizioni operative.
Obiettivo
Hydrogen could replace fossil fuels, and electrolytic water splitting using renewable energy sources is a promising way to obtain it. The most active hydrogen evolution reaction (HER) electrocatalysts to date are platinum group metals (PGM), mainly Pt and its alloys, deposited onto a carbon support. Pt is however costly and the catalysts degrade over time, due to aggregation of metal nanoparticles over the support. Also, no valuable contenders to Pt group metals have been identified for the alkaline HER. To address these issues, we propose to focus again on PGM based catalysts, but with solutions that reduce the amount of noble metal and that ensure catalyst stability by preventing aggregation. In our recently completed ERC project TRANS-NANO, we have prepared a highly active and stable HER catalyst, composed of a nanostructured Cu-Pt porous layer, directly grown onto a Ti current collector by in-situ slow electrodeposition of Pt. This catalyst delivers high hydrogen evolution current and outperforms the benchmark Pt/C in terms of activity at high overpotentials, and solves the most critical issue of Pt/C: its low long-term stability under operational conditions. Our catalyst can achieve the same performances of the Pt/C catalyst, but with a much lower Pt loading. For Ru, the process delivers a Cu-Ru/Ti catalyst with even better performance than the Cu-Pt/Ti system. In this POC project, we will upscale the production of Cu-Pt and Cu-Ru catalysts, starting from large area Ti substrates. Their HER activity will be tested under industrially relevant conditions. Such electrode architecture will enable the fabrication of high-performance alkaline water electrolysers for large-scale applications. Our team is best suited to take this challenge, having a consolidated expertise in developing nanoscale materials and catalysts, and in their exploitation for both oxygen and hydrogen evolution reactions. The proposal envisages a strong collaboration with the industry sector.
Campo scientifico
- natural scienceschemical sciencescatalysiselectrocatalysis
- natural scienceschemical scienceselectrochemistryelectrolysis
- natural scienceschemical sciencesinorganic chemistrytransition metals
- engineering and technologynanotechnologynano-materials
- engineering and technologyenvironmental engineeringenergy and fuels
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-POC-LS - ERC Proof of Concept Lump Sum PilotIstituzione ospitante
16163 Genova
Italia