Description du projet
Un catalyseur stable pour un courant de dégagement d’hydrogène élevé
L’hydrogène est une alternative potentielle aux combustibles fossiles. La meilleure façon de le fabriquer est le fractionnement électrolytique de l’eau à partir de sources d’énergie renouvelables. Les électrocatalyseurs de la réaction de dégagement d’hydrogène (HER), comme le Pt, sont les plus actifs mais les plus coûteux et les moins résistants dans le temps en raison de l’accumulation de nanoparticules métalliques sur le support. Le projet HyCat, financé par l’UE, propose des solutions pour réduire la quantité de métal noble afin de garantir la stabilité du catalyseur en empêchant l’agrégation. La solution sera élaborée autour d’un catalyseur HER hautement actif et stable composé d’une couche poreuse de Cu-Pt nanostructurée, directement cultivée sur un collecteur de courant en Ti par électrodéposition lente de Pt in situ. Ce catalyseur assure un courant de dégagement d’hydrogène élevé et une stabilité à long terme dans des conditions opérationnelles.
Objectif
Hydrogen could replace fossil fuels, and electrolytic water splitting using renewable energy sources is a promising way to obtain it. The most active hydrogen evolution reaction (HER) electrocatalysts to date are platinum group metals (PGM), mainly Pt and its alloys, deposited onto a carbon support. Pt is however costly and the catalysts degrade over time, due to aggregation of metal nanoparticles over the support. Also, no valuable contenders to Pt group metals have been identified for the alkaline HER. To address these issues, we propose to focus again on PGM based catalysts, but with solutions that reduce the amount of noble metal and that ensure catalyst stability by preventing aggregation. In our recently completed ERC project TRANS-NANO, we have prepared a highly active and stable HER catalyst, composed of a nanostructured Cu-Pt porous layer, directly grown onto a Ti current collector by in-situ slow electrodeposition of Pt. This catalyst delivers high hydrogen evolution current and outperforms the benchmark Pt/C in terms of activity at high overpotentials, and solves the most critical issue of Pt/C: its low long-term stability under operational conditions. Our catalyst can achieve the same performances of the Pt/C catalyst, but with a much lower Pt loading. For Ru, the process delivers a Cu-Ru/Ti catalyst with even better performance than the Cu-Pt/Ti system. In this POC project, we will upscale the production of Cu-Pt and Cu-Ru catalysts, starting from large area Ti substrates. Their HER activity will be tested under industrially relevant conditions. Such electrode architecture will enable the fabrication of high-performance alkaline water electrolysers for large-scale applications. Our team is best suited to take this challenge, having a consolidated expertise in developing nanoscale materials and catalysts, and in their exploitation for both oxygen and hydrogen evolution reactions. The proposal envisages a strong collaboration with the industry sector.
Champ scientifique
- natural scienceschemical sciencescatalysiselectrocatalysis
- natural scienceschemical scienceselectrochemistryelectrolysis
- natural scienceschemical sciencesinorganic chemistrytransition metals
- engineering and technologynanotechnologynano-materials
- engineering and technologyenvironmental engineeringenergy and fuels
Programme(s)
Régime de financement
ERC-POC-LS - ERC Proof of Concept Lump Sum PilotInstitution d’accueil
16163 Genova
Italie