Projektbeschreibung
Katalysatorstabilität für einen hohen Wasserstoffentwicklungsstrom
Wasserstoff kann eine Alternative zu fossilen Brennstoffen darstellen. Er lässt sich am besten gewinnen, indem man Wasser unter Verwendung erneuerbarer Energiequellen elektrolytisch spaltet. Elektrokatalysatoren für die Wasserstoffentwicklungsreaktion wie Platin bieten die größte Aktivität, sind aber kostspielig und ihre Leistung fällt im Laufe der Zeit ab, da sich Metallnanopartikel auf dem Träger ansammeln. Das EU-finanzierte Projekt HyCat schlägt Lösungen vor, wie die Edelmetallmenge gesenkt werden kann, um die Katalysatorstabilität durch die Verhinderung solcher Niederschläge zu gewährleisten. Die Lösung wird auf einem hochaktiven und stabilen Katalysator für die Wasserstoffentwicklungsreaktion beruhen, der aus einer nanostrukturierten, porösen Kupfer-Platin-Schicht besteht, welche durch langsame In-situ-Galvanoabscheidung von Platin direkt auf einen Stromabnehmer aus Titan aufgetragen wird. Dieser Katalysator bietet einen hohen Wasserstoffentwicklungsstrom und langfristige Stabilität bei normalen Betriebsbedingungen.
Ziel
Hydrogen could replace fossil fuels, and electrolytic water splitting using renewable energy sources is a promising way to obtain it. The most active hydrogen evolution reaction (HER) electrocatalysts to date are platinum group metals (PGM), mainly Pt and its alloys, deposited onto a carbon support. Pt is however costly and the catalysts degrade over time, due to aggregation of metal nanoparticles over the support. Also, no valuable contenders to Pt group metals have been identified for the alkaline HER. To address these issues, we propose to focus again on PGM based catalysts, but with solutions that reduce the amount of noble metal and that ensure catalyst stability by preventing aggregation. In our recently completed ERC project TRANS-NANO, we have prepared a highly active and stable HER catalyst, composed of a nanostructured Cu-Pt porous layer, directly grown onto a Ti current collector by in-situ slow electrodeposition of Pt. This catalyst delivers high hydrogen evolution current and outperforms the benchmark Pt/C in terms of activity at high overpotentials, and solves the most critical issue of Pt/C: its low long-term stability under operational conditions. Our catalyst can achieve the same performances of the Pt/C catalyst, but with a much lower Pt loading. For Ru, the process delivers a Cu-Ru/Ti catalyst with even better performance than the Cu-Pt/Ti system. In this POC project, we will upscale the production of Cu-Pt and Cu-Ru catalysts, starting from large area Ti substrates. Their HER activity will be tested under industrially relevant conditions. Such electrode architecture will enable the fabrication of high-performance alkaline water electrolysers for large-scale applications. Our team is best suited to take this challenge, having a consolidated expertise in developing nanoscale materials and catalysts, and in their exploitation for both oxygen and hydrogen evolution reactions. The proposal envisages a strong collaboration with the industry sector.
Wissenschaftliches Gebiet
- natural scienceschemical sciencescatalysiselectrocatalysis
- natural scienceschemical scienceselectrochemistryelectrolysis
- natural scienceschemical sciencesinorganic chemistrytransition metals
- engineering and technologynanotechnologynano-materials
- engineering and technologyenvironmental engineeringenergy and fuels
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-POC-LS - ERC Proof of Concept Lump Sum PilotGastgebende Einrichtung
16163 Genova
Italien