Description du projet
Les mécanismes de localisation du son au sein du cerveau
La capacité de détermination de l’origine d’un son peut être essentielle à la survie. L’audition dans l’espace est une compétence permettant de localiser la source d’un son et implique souvent de filtrer les bruits ambiants. Mieux comprendre la manière dont le cerveau détermine l’emplacement de sons complexes tels que la voix d’un individu dans une rue bondée est d’une grande importance pour traiter la surdité, un trouble qui touche plus de 34 millions de citoyens européens. Le projet SOLOC, financé par l’UE, combinera la modélisation informatique (réseaux de neurones profonds) avec les dernières avancées en neurosciences et en audiologie clinique afin d’étudier les mécanismes du cerveau qui sous-tendent la localisation sonore. Le projet rassemble les disciplines des neurosciences, de la modélisation informatique et de l’audiologie clinique.
Objectif
With the rise of urbanization, silence has become a rarity. Sound is all around us, and our hearing skills are essential in everyday life. Spatial hearing is one of these skills: We use sound localization to determine where something is happening in our surroundings, or to ‘zoom in’ on a friend’s voice and filter out the noise background in the bar. But how does the brain compute the location of real-life, complex sounds such as a voice? Knowledge of these neural computational mechanisms is crucial to develop remedies for when spatial hearing fails, such as in hearing loss (>34 million EU citizens). Hearing impaired (HI) listeners experience great difficulties with understanding speech in everyday, noisy environments despite the use of an assistive hearing device like a cochlear implant (CI). Their difficulties are partially caused by reduced spatial hearing, which hampers filtering out a specific sound such as a voice based on its position. The resulting communication problems impact personal wellbeing as well as the economy (e.g. higher unemployment rates). In SOLOC, I use an innovative, intersectional approach combining cutting-edge computational modelling (deep neural networks) with state-of-the-art neuroscience and clinical audiology to gain insight into the brain mechanisms underpinning sound localization. Using this knowledge, I explore signal processing strategies for CIs that boost spatial encoding in the brain to improve speech-in-noise understanding. Through this Global Fellowship, I connect the unique computational expertise of Prof. Mesgarani (Columbia University) and his experience with translating computational neuroscience into clinical applications, to the exceptional medical expertise on hearing loss and CIs of Prof. Kremer (Maastricht University). Hence, by implementing SOLOC I will diversify myself into a multidisciplinary, independent researcher operating at the interface of neuroscience, computational modelling, and clinical audiology.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsignal processing
- natural sciencesbiological sciencesneurobiologycomputational neuroscience
- social sciencessociologysocial issuesunemployment
- natural sciencescomputer and information sciencesartificial intelligencecomputational intelligence
Mots‑clés
Programme(s)
Régime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
6525 XZ Nijmegen
Pays-Bas