Descrizione del progetto
Sfruttare la potenza dei portatori di informazioni magnetiche che si muovono liberamente in tre dimensioni
Negli ultimi due decenni, i materiali magnetici sono diventati controllabili su scala nanometrica, aprendo la porta a fenomeni unici con applicazioni potenziali interessanti. Le nanostrutture magnetiche tra cui nanoparticelle, nanofili, autoassemblaggi, nanocluster, nanogranuli, multistrati e pellicole ultrasottili stanno trovando applicazioni in campi come la memorizzazione dei dati, il rilevamento, la spintronica e la biomedicina. Fino a poco tempo fa, la maggior parte dei nanomagneti modellati erano nanostrutture planari 2D. I progressi nei metodi di sintesi stanno favorendo strutture 3D con proprietà senza precedenti. Tra le strutture più interessanti ci sono i solitoni magnetici (SM), uno stato di legami di molte eccitazioni elementari magnetiche o magnoni. Il progetto 3D MAGiC, finanziato dall’UE, riunisce quattro gruppi di ricerca altamente qualificati per portare il campo al livello successivo attraverso un’indagine teorica e sperimentale sulla nucleazione, la stabilità, la dinamica e il trasporto associati ai solitoni magnetici 3D.
Obiettivo
Over the past 150 years, many of the greatest questions in physics, spanning astronomical dimensions to quarks, have addressed how particles can emerge in continuous fields. In this highly exploratory project, we will open a window into the behavior and control of some of the least explored and most puzzling objects in nanomagnetism: three-dimensional (3D) magnetic solitons (MSs). These are spatially localized stable magnetization textures that have particle-like properties and are expected to move and interact in 3D in magnetic crystals and heterostructures in a similar manner to ordinary particles. Until now, their theoretical study has been restricted to simple models, while the experimental study of individual 3D MSs is nearly unexplored as a result of their deep-sub-micron size and a current lack of suitable characterization techniques. We bring together four complementary research groups with expertise in theoretical descriptions of magnetism, device physics and magnetic characterization with high spatial and temporal resolution. Methodological breakthroughs by the partners will enable new fundamental theoretical and experimental insights into the nucleation, stability, dynamics and transport of 3D MSs, which are predicted to be influenced strongly by their nontrivial topology. Particular attention will be paid to the manner in which 3D MSs can be controlled and manipulated dynamically. This project will open the field of 3D magnetization textures at the nanoscale to fundamental science,with a view to enabling disruptive applications. 3D MSs are foreseen to play the role of information carriers that can move freely in any spatial direction and to offer a key advance over conventional 2D magnetization textures. Results from the project will provide guidelines for their use in applications that include magnetic storage technology and neuromorphic information processing systems and enable the realization of pervasive new 3D device concepts.
Campo scientifico
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-SyG - Synergy grantIstituzione ospitante
52428 Julich
Germania