Projektbeschreibung
Nutzung der Leistung magnetischer Informationsträger, die sich frei in drei Dimensionen bewegen
In den letzten Jahrzehnten sind magnetische Materialien im Nanobereich steuerbar geworden und ermöglichen einzigartige Phänomene mit aufregenden Anwendungsmöglichkeiten. Magnetische Nanostrukturen wie Nanopartikel, Nanodrähte, Selbstassemblierungen, Nanocluster, Nanogranulate, Mehrfachschichten und ultradünne Filme finden Anwendung in Bereichen wie Datenspeicherung, Sensorik, Spintronik und Biomedizin. Bis vor kurzem waren die meisten strukturierten Nanomagnete planare 2D-Nanostrukturen. Fortschritte bei den Synthesemethoden ermöglichen jetzt 3D-Strukturen mit beispiellosen Eigenschaften. Zu den interessantesten Strukturen gehören magnetische Solitonen – ein gebundener Zustand vieler elementarer magnetischer Anregungen oder Magnonen. Das EU-finanzierte Projekt 3D-MAGiC bringt vier führende Forschungsgruppen zusammen, um das Gebiet mithilfe von theoretischen und experimentellen Untersuchungen zu Keimbildung, Stabilität, Dynamik und Transport von dreidimensionalen magnetischen Solitonen zu erweitern.
Ziel
Over the past 150 years, many of the greatest questions in physics, spanning astronomical dimensions to quarks, have addressed how particles can emerge in continuous fields. In this highly exploratory project, we will open a window into the behavior and control of some of the least explored and most puzzling objects in nanomagnetism: three-dimensional (3D) magnetic solitons (MSs). These are spatially localized stable magnetization textures that have particle-like properties and are expected to move and interact in 3D in magnetic crystals and heterostructures in a similar manner to ordinary particles. Until now, their theoretical study has been restricted to simple models, while the experimental study of individual 3D MSs is nearly unexplored as a result of their deep-sub-micron size and a current lack of suitable characterization techniques. We bring together four complementary research groups with expertise in theoretical descriptions of magnetism, device physics and magnetic characterization with high spatial and temporal resolution. Methodological breakthroughs by the partners will enable new fundamental theoretical and experimental insights into the nucleation, stability, dynamics and transport of 3D MSs, which are predicted to be influenced strongly by their nontrivial topology. Particular attention will be paid to the manner in which 3D MSs can be controlled and manipulated dynamically. This project will open the field of 3D magnetization textures at the nanoscale to fundamental science,with a view to enabling disruptive applications. 3D MSs are foreseen to play the role of information carriers that can move freely in any spatial direction and to offer a key advance over conventional 2D magnetization textures. Results from the project will provide guidelines for their use in applications that include magnetic storage technology and neuromorphic information processing systems and enable the realization of pervasive new 3D device concepts.
Wissenschaftliches Gebiet
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-SyG - Synergy grantGastgebende Einrichtung
52428 Julich
Deutschland