Project description
Harnessing the power of magnetic information carriers moving freely in three dimensions
Over the last couple of decades, magnetic materials have become controllable at the nanoscale, opening the door to unique phenomena with exciting potential applications. Magnetic nanostructures including nanoparticles, nanowires, self-assemblies, nanoclusters, nanogranules, multilayers and ultrathin films are finding applications in fields such as data storage, sensing, spintronics and biomedicine. Until recently, most patterned nanomagnets were 2D planar nanostructures. Advances in synthesis methods are now enabling 3D structures with unprecedented properties. Among the most interesting structures are magnetic solitons (MSs), a bound state of many elementary magnetic excitations or magnons. The EU-funded 3D MAGiC project brings together four leading research groups to take the field to the next level through theoretical and experimental investigation of the nucleation, stability, dynamics and transport associated with 3D MSs.
Objective
Over the past 150 years, many of the greatest questions in physics, spanning astronomical dimensions to quarks, have addressed how particles can emerge in continuous fields. In this highly exploratory project, we will open a window into the behavior and control of some of the least explored and most puzzling objects in nanomagnetism: three-dimensional (3D) magnetic solitons (MSs). These are spatially localized stable magnetization textures that have particle-like properties and are expected to move and interact in 3D in magnetic crystals and heterostructures in a similar manner to ordinary particles. Until now, their theoretical study has been restricted to simple models, while the experimental study of individual 3D MSs is nearly unexplored as a result of their deep-sub-micron size and a current lack of suitable characterization techniques. We bring together four complementary research groups with expertise in theoretical descriptions of magnetism, device physics and magnetic characterization with high spatial and temporal resolution. Methodological breakthroughs by the partners will enable new fundamental theoretical and experimental insights into the nucleation, stability, dynamics and transport of 3D MSs, which are predicted to be influenced strongly by their nontrivial topology. Particular attention will be paid to the manner in which 3D MSs can be controlled and manipulated dynamically. This project will open the field of 3D magnetization textures at the nanoscale to fundamental science,with a view to enabling disruptive applications. 3D MSs are foreseen to play the role of information carriers that can move freely in any spatial direction and to offer a key advance over conventional 2D magnetization textures. Results from the project will provide guidelines for their use in applications that include magnetic storage technology and neuromorphic information processing systems and enable the realization of pervasive new 3D device concepts.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Programme(s)
Topic(s)
Funding Scheme
ERC-SyG - Synergy grantHost institution
52428 Julich
Germany