Objetivo
Breast cancer is one of the main causes of death among women worldwide. Early diagnosis by mammography scanning is the best way to prevent mortality, but it requires the intervention of a highly trained workforce (radiologists). While the demand for radiologists is on the rise, the supply is quickly diminishing worldwide. This leads to long waiting lists and delays in getting a diagnosis, negatively affecting quality of services and ultimately survival rates. There is a strong need for tools that help radiologists make accurate decisions on mammography images in less time. CAD-based systems were developed to address this need; however, they have very low specificity, which leads to a high number of false positives, unnecessarily increasing the recall rates, and raising doubts about their usefulness. Mammo1 will be a game-changer in the area of breast cancer diagnosis by applying ground-breaking machine learning techniques, which are able to outperform all the currently marketed CAD-based solutions and even single radiologists.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias médicas y de la saludmedicina clínicaradiología
- ciencias médicas y de la saludmedicina clínicaoncologíacáncer de mama
- ciencias naturalesinformática y ciencias de la informacióninteligencia artificialaprendizaje automáticoaprendizaje profundo
- ciencias socialeseconomía y empresagestión y empresasempleo
- ciencias naturalesinformática y ciencias de la informacióninteligencia artificialinteligencia computacional
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-SMEInst-2018-2020-1
Régimen de financiación
SME-1 - SME instrument phase 1Coordinador
EC1V 9BG LONDON
Reino Unido
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.