Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Deep learning for mammography: Improving accuracy and productivity in breast cancer diagnosis.

Cel

Breast cancer is one of the main causes of death among women worldwide. Early diagnosis by mammography scanning is the best way to prevent mortality, but it requires the intervention of a highly trained workforce (radiologists). While the demand for radiologists is on the rise, the supply is quickly diminishing worldwide. This leads to long waiting lists and delays in getting a diagnosis, negatively affecting quality of services and ultimately survival rates. There is a strong need for tools that help radiologists make accurate decisions on mammography images in less time. CAD-based systems were developed to address this need; however, they have very low specificity, which leads to a high number of false positives, unnecessarily increasing the recall rates, and raising doubts about their usefulness. Mammo1 will be a game-changer in the area of breast cancer diagnosis by applying ground-breaking machine learning techniques, which are able to outperform all the currently marketed CAD-based solutions and even single radiologists.

Zaproszenie do składania wniosków

H2020-EIC-SMEInst-2018-2020

Zobacz inne projekty w ramach tego zaproszenia

Szczegółowe działanie

H2020-SMEInst-2018-2020-1

Koordynator

KHEIRON MEDICAL TECHNOLOGIES LTD
Wkład UE netto
€ 50 000,00
Adres
2ND STYLUS BUILDING, 112-116 OLD STREET
EC1V 9BG LONDON
Zjednoczone Królestwo

Zobacz na mapie

MŚP

Organizacja określiła się jako MŚP (firma z sektora małych i średnich przedsiębiorstw) w czasie podpisania umowy o grant.

Tak
Region
London Inner London — East Haringey and Islington
Rodzaj działalności
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Linki
Koszt całkowity
€ 71 429,00