Descrizione del progetto
Una teoria universale della propagazione delle onde indipendente dal vettore o dal mezzo di trasporto
La natura ondulatoria del suono e della luce è alla base di applicazioni e campi quali l’imaging a ultrasuoni e ottico, le tecnologie radar e sonar e la sismologia. Tuttavia, proprio come le increspature dell’acqua in un lago si infrangono sulle foglie sulla superficie del lago, le aberrazioni e la dispersione del fronte d’onda possono degradare l’integrità delle onde sonore e luminose nei dispositivi e nelle tecnologie. Sono stati sviluppati formalismi di matrice per descrivere la propagazione delle onde tra serie di trasduttori nell’imaging acustico, ottico e sismico. Ora il progetto REMINISCENCE, finanziato dall’UE, sta pianificando di unire questi tipi di descrizioni in un approccio a matrice universalmente applicabile per grandi reti di sensori, portando a una teoria dell’informazione sull’imaging delle onde.
Obiettivo
In wave imaging, we aim at characterizing an unknown environment by actively probing it and then recording the waves reflected by the medium. It is, for example, the principle of ultrasound imaging, optical coherence tomography for light or reflection seismology in geophysics. However, wave propagation from the sensors to the focal plane is often degraded by the heterogeneities of the medium itself. They can induce wave-front distortions (aberrations) and multiple scattering events that can strongly degrade the resolution and the contrast of the image. Aberration and multiple scattering thus constitute the most fundamental limits for imaging in all domains of wave physics.
However, the emergence of large-scale sensors array and recent advances in data science pave the way towards a next revolution in wave imaging. In that context, I want to develop a universal matrix approach of wave imaging in heterogeneous media. Such a formalism is actually the perfect tool to capture the input-output correlations of the wave-field with a large network of sensors. This matrix approach will allow to overcome aberrations over large imaging volumes, thus breaking the field-of-view limitations of conventional adaptive focusing methods. It will also lead to the following paradigm shift in wave imaging: Whereas multiple scattering is generally seen as a nightmare for imaging, the matrix approach will take advantage of it for ultra-deep imaging. Besides direct imaging applications, this project will also provide a high-resolution tomography of the wave velocity and a promising characterization tool based on multiple scattering quantification. Based on all these advances, the ultimate goal of this project will be to develop an information theory of wave imaging. Throughout this project, I will apply all these concepts both in optics (for in-depth imaging of biological tissues), ultrasound imaging (for medical diagnosis) and seismology (for monitoring of volcanoes and fault zones).
Campo scientifico
- natural sciencescomputer and information sciencesdata science
- natural sciencesearth and related environmental sciencesgeologyvolcanology
- social sciencespolitical sciencespolitical transitionsrevolutions
- natural sciencesearth and related environmental sciencesgeologyseismology
- natural sciencesearth and related environmental sciencesgeophysics
- natural sciencesphysical sciencesacousticsultrasound
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-COG - Consolidator GrantIstituzione ospitante
75794 Paris
Francia