Description du projet
Une théorie universelle de la propagation des ondes, indépendante du support ou du moyen de transport
La nature ondulatoire du son et de la lumière est à l’origine d’applications et de domaines tels que l’imagerie ultrasonore et optique, les technologies radar et sonar et la sismologie. Cependant, tout comme les ondulations de l’eau dans un lac se brisent sur les feuilles à la surface du lac, les aberrations du front d’onde et la diffusion peuvent dégrader l’intégrité des ondes sonores et lumineuses dans des dispositifs et des technologies. Des formalismes matriciels ont été développés pour décrire la propagation des ondes entre des réseaux de transducteurs en acoustique, en optique et en imagerie sismique. Le projet REMINISCENCE, financé par l’UE, prévoit de réunir ces types de descriptions dans une approche matricielle universellement applicable à de grands réseaux de capteurs, menant à une théorie de l’information de l’imagerie des ondes.
Objectif
In wave imaging, we aim at characterizing an unknown environment by actively probing it and then recording the waves reflected by the medium. It is, for example, the principle of ultrasound imaging, optical coherence tomography for light or reflection seismology in geophysics. However, wave propagation from the sensors to the focal plane is often degraded by the heterogeneities of the medium itself. They can induce wave-front distortions (aberrations) and multiple scattering events that can strongly degrade the resolution and the contrast of the image. Aberration and multiple scattering thus constitute the most fundamental limits for imaging in all domains of wave physics.
However, the emergence of large-scale sensors array and recent advances in data science pave the way towards a next revolution in wave imaging. In that context, I want to develop a universal matrix approach of wave imaging in heterogeneous media. Such a formalism is actually the perfect tool to capture the input-output correlations of the wave-field with a large network of sensors. This matrix approach will allow to overcome aberrations over large imaging volumes, thus breaking the field-of-view limitations of conventional adaptive focusing methods. It will also lead to the following paradigm shift in wave imaging: Whereas multiple scattering is generally seen as a nightmare for imaging, the matrix approach will take advantage of it for ultra-deep imaging. Besides direct imaging applications, this project will also provide a high-resolution tomography of the wave velocity and a promising characterization tool based on multiple scattering quantification. Based on all these advances, the ultimate goal of this project will be to develop an information theory of wave imaging. Throughout this project, I will apply all these concepts both in optics (for in-depth imaging of biological tissues), ultrasound imaging (for medical diagnosis) and seismology (for monitoring of volcanoes and fault zones).
Champ scientifique
- natural sciencescomputer and information sciencesdata science
- natural sciencesearth and related environmental sciencesgeologyvolcanology
- social sciencespolitical sciencespolitical transitionsrevolutions
- natural sciencesearth and related environmental sciencesgeologyseismology
- natural sciencesearth and related environmental sciencesgeophysics
- natural sciencesphysical sciencesacousticsultrasound
Mots‑clés
Programme(s)
Régime de financement
ERC-COG - Consolidator GrantInstitution d’accueil
75794 Paris
France