Opis projektu
Uniwersalna teoria propagacji fal, niezależna od nośnika czy ośrodka
Falowa natura dźwięku i światła dała podstawę do utworzenia licznych zastosowań technicznych i opracowania dziedzin wiedzy, takich jak obrazowanie ultradźwiękowe i optyczne, technologie radarowe i sonarowe oraz technologie sejsmologiczne. Jednak tak jak fale wody w jeziorze nie są w stanie przetrwać zderzenia z liściem na powierzchni jeziora, aberracje czoła fali i rozpraszanie mogą pogorszyć spójność fal dźwiękowych i świetlnych, a tym samym wpływać na jakość rozwiązań technicznych i technologicznych. Formalizmy macierzowe zostały opracowane do opisu propagacji fal między zestawami przetworników w akustyce, optyce i obrazowaniu sejsmicznym. Obecnie w ramach finansowanego ze środków UE projektu REMINISCENCE planowane jest połączenie tego typu opisów w uniwersalne podejście macierzowe mające zastosowanie do dużych sieci czujników i być może prowadzące do utworzenia teorii informacji obrazowania falowego.
Cel
In wave imaging, we aim at characterizing an unknown environment by actively probing it and then recording the waves reflected by the medium. It is, for example, the principle of ultrasound imaging, optical coherence tomography for light or reflection seismology in geophysics. However, wave propagation from the sensors to the focal plane is often degraded by the heterogeneities of the medium itself. They can induce wave-front distortions (aberrations) and multiple scattering events that can strongly degrade the resolution and the contrast of the image. Aberration and multiple scattering thus constitute the most fundamental limits for imaging in all domains of wave physics.
However, the emergence of large-scale sensors array and recent advances in data science pave the way towards a next revolution in wave imaging. In that context, I want to develop a universal matrix approach of wave imaging in heterogeneous media. Such a formalism is actually the perfect tool to capture the input-output correlations of the wave-field with a large network of sensors. This matrix approach will allow to overcome aberrations over large imaging volumes, thus breaking the field-of-view limitations of conventional adaptive focusing methods. It will also lead to the following paradigm shift in wave imaging: Whereas multiple scattering is generally seen as a nightmare for imaging, the matrix approach will take advantage of it for ultra-deep imaging. Besides direct imaging applications, this project will also provide a high-resolution tomography of the wave velocity and a promising characterization tool based on multiple scattering quantification. Based on all these advances, the ultimate goal of this project will be to develop an information theory of wave imaging. Throughout this project, I will apply all these concepts both in optics (for in-depth imaging of biological tissues), ultrasound imaging (for medical diagnosis) and seismology (for monitoring of volcanoes and fault zones).
Dziedzina nauki
- natural sciencescomputer and information sciencesdata science
- natural sciencesearth and related environmental sciencesgeologyvolcanology
- social sciencespolitical sciencespolitical transitionsrevolutions
- natural sciencesearth and related environmental sciencesgeologyseismology
- natural sciencesearth and related environmental sciencesgeophysics
- natural sciencesphysical sciencesacousticsultrasound
Słowa kluczowe
Program(-y)
Temat(-y)
System finansowania
ERC-COG - Consolidator GrantInstytucja przyjmująca
75794 Paris
Francja