Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

FLEXOELECTRIC SCAFFOLDS FOR BONE TISSUE ENGINEERING

Ziel

"Bone is the most transplanted tissue with 1.3 million procedures every year in Europe. With an increasing demographic ageing across Europe, bone transplant represents a significant socio-economic burden that necessitates new bone regeneration strategies in line with one of the Horizon 2020 priority: ""Smart Growth: knowledge and innovation based economy"". The field of bone tissue engineering has flourished over the last decades, owing to a solid knowledge on bone biology and increased progress on materials engineering. A few weeks ago, Dr Gustau Catalan at ICN2 brought to light the groundbreaking discovery that bone is flexoelectric. In order to biomimic the flexoelectric character of bone, we aim in this project to produce new synthetic bone scaffolds that exhibit flexoelectricity. Engineering scaffolds with a flexoelectric character calls for particular design requirements. Flexoelectricity is the coupling between strain gradients and polarization, whereby any dielectric can polarize in response to an inhomogeneous deformation. In order to generate the required strain gradients within the scaffold to produce a flexoelectric effect, scaffolds will be manufactured with controlled porosity gradients by 3D printing based approaches. Three polymers used in bone tissue engineering, namely PLLA, PLGA and PCL will be investigated to produce the flexoelectric scaffolds. It is envisaged that a flexoelectric-induced polarization can be attained in any of them. In view of improving the osteoconductive, osteogenic and mechanical properties of the flexoelectric scaffolds, they will further incorporate different amounts of nanohydroxyapatite (from 0 to 50 wt %). Finite element calculations will be used to refine porosity geometries (porosity gradient and pore shape). It is expected that through careful geometrical design of porosity, scaffolds could exhibit a bone-like flexoelectric effect that would not only support the bone tissue regeneration process but also stimulate it."

Wissenschaftliches Gebiet

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.

Koordinator

FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA
Netto-EU-Beitrag
€ 158 121,60
Adresse
CAMPUS DE LA UAB EDIFICI Q ICN2
08193 Cerdanyola Del Valles
Spanien

Auf der Karte ansehen

Region
Este Cataluña Barcelona
Aktivitätstyp
Research Organisations
Links
Gesamtkosten
€ 158 121,60