Objetivo
Successful social interactions require social decision making, the ability to guide our actions in line with the goals and expectations of the people around us. Disordered social decision making – e.g. associated with criminal activity or psychiatric illnesses – poses significant financial and personal challenges to society. However, the brain mechanisms that enable us to control our social behavior are far from being understood. Here I will take decisive steps towards a causal understanding of these mechanisms by elucidating the role of functional interactions in the brain networks responsible for steering strategic, prosocial, and norm-compliant behavior. I will employ a unique multi-method approach that integrates computational modeling of social decisions with new combinations of multimodal neuroimaging and brain stimulation methods. Using EEG-fMRI, I will first identify spatio-temporal patterns of functional interactions between brain areas that correlate with social decision processes as identified by computational modeling of behavior in different economic games. In combined brain stimulation-fMRI studies, I will then attempt to affect – and in fact enhance – these social decision-making processes by modulating the identified brain network patterns with novel, targeted brain stimulation protocols and measuring the resulting effects on behavior and brain activity. Finally, I will examine whether the identified brain network mechanisms are indeed related to disturbed social decisions in two psychiatric illnesses characterized by maladaptive social behavior (post-traumatic stress disorder and autism spectrum disorder). My proposed work plan will generate a causal understanding of the brain network mechanisms that allow humans to control their social decisions, thereby elucidating a biological basis for individual differences in social behavior and paving the way for new perspectives on how disordered social behavior may be identified and hopefully remedied.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
Palabras clave
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
8006 Zurich
Suiza