Description du projet
Simulation moléculaire de l’auto-assemblage d’un cadre métallo-organique
Les cadres métallo-organiques (MOF pour «metal-organic framework») constituent une classe relativement nouvelle de matériaux cristallins formés de grappes ou de nœuds métalliques inorganiques reliés par des liants organiques dans le cadre d’un processus d’auto-assemblage. Leur très grande porosité et leur surface extrêmement élevée par rapport au volume total les rendent particulièrement intéressants pour des applications telles que la séparation et le stockage des gaz, la détection et la catalyse. Il existe des possibilités pratiquement illimitées de combinaisons métal-liant qui permettent d’adapter les interactions hôte-invité ainsi que la possibilité d’en faire des nanoparticules, des composites ou des films minces. Une meilleure compréhension et, partant, un meilleur contrôle de leurs processus d’auto-assemblage sont nécessaires afin de pouvoir pleinement les exploiter. Le projet GROWMOF, financé par l’UE, développera de nouvelles méthodes de simulation moléculaire pour caractériser la formation des MOF à différentes échelles de longueur afin de répondre à ce besoin.
Objectif
Metal-organic frameworks (MOFs) constitute one of the most exciting developments in recent nanoporous material science. Synthesised in a self-assembly process from metal corners and organic linkers, a near infinite number of materials can be created by combining different building blocks allowing to fine tune host guest interactions. MOFs are therefore considered promising materials for many applications such as gas separation, drug delivery or sensors for which MOFs in form of nanoparticles, composite materials or thin films are required. For MOFs to realise their potential and to become more than just promising materials, a degree of predictability in the synthesis and the properties of the resulting material is paramount and the full multiscale pathway from molecular assembly to crystal growth and thin film formation needs to be better understood.
Molecular simulation has greatly contributed to developing adsorption applications of MOFs and now works hand-in-hand with experimental methods to characterise MOFs, predict their performance and study molecular level phenomena. In contrast, hardly any simulation studies exist about the formation of MOFs, their crystal growth or the formation of thin films. Yet such studies are essential for understanding the fundamentals which will ultimately lead to a better control of the material properties. Building on my expertise in molecular modelling including the development of methods to model the synthesis of porous solids, we will develop new methods to study:
1. the self-assembly process of MOFs under synthesis conditions
2. the formation of nanoparticles
3. the integration of MOF nanoparticles into composite materials and the self-assembly into extended structures
4. the layer-by-layer growth of thin films
At the end of the project we will have transformed our understanding of how MOFs form at a variety of length scales and opened up new research directions for the targeted synthesis of MOFs fit for applications.
Champ scientifique
- engineering and technologymaterials engineeringcrystals
- engineering and technologymaterials engineeringcoating and films
- natural sciencesphysical sciencesmolecular and chemical physics
- engineering and technologynanotechnologynano-materials
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
Mots‑clés
Programme(s)
Régime de financement
ERC-COG - Consolidator GrantInstitution d’accueil
BA2 7AY Bath
Royaume-Uni