Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Modelling of MOF self-assembly, crystal growth and thin film formation

Projektbeschreibung

Molekulare Simulation der Selbstorganisation von metallorganischen Gerüstverbindungen

Metallorganische Gerüstverbindungen sind eine relativ neue Klasse kristalliner Materialien, die aus anorganischen Metallclustern oder -knoten bestehen, die durch organische Verbindungselemente in einem Selbstorganisationsprozess verbunden werden. Aufgrund ihrer sehr hohen Porosität und extrem großen Oberfläche im Verhältnis zum Gesamtvolumen eignen sie sich besonders gut für Anwendungen wie Gastrennung und -speicherung, Sensorik und Katalyse. Es gibt praktisch unbegrenzte Möglichkeiten für Metall-Linker-Kombinationen, mit denen die Wechselwirkungen zwischen Wirt und Gast maßgeschneidert werden können, sowie die Möglichkeit, sie in Form von Nanopartikeln, Verbundwerkstoffen oder Dünnfilmen herzustellen. Um sie in vollem Umfang nutzen zu können, ist ein besseres Verständnis und damit eine bessere Kontrolle über ihre Selbstorganisationsprozesse erforderlich. Im Rahmen des EU-finanzierten Projekts GROWMOF werden neue molekulare Simulationsmethoden zur Charakterisierung der Bildung metallorganischer Gerüstverbindungen auf verschiedenen Längenskalen entwickelt, um diesen Bedarf zu decken.

Ziel

Metal-organic frameworks (MOFs) constitute one of the most exciting developments in recent nanoporous material science. Synthesised in a self-assembly process from metal corners and organic linkers, a near infinite number of materials can be created by combining different building blocks allowing to fine tune host guest interactions. MOFs are therefore considered promising materials for many applications such as gas separation, drug delivery or sensors for which MOFs in form of nanoparticles, composite materials or thin films are required. For MOFs to realise their potential and to become more than just promising materials, a degree of predictability in the synthesis and the properties of the resulting material is paramount and the full multiscale pathway from molecular assembly to crystal growth and thin film formation needs to be better understood.

Molecular simulation has greatly contributed to developing adsorption applications of MOFs and now works hand-in-hand with experimental methods to characterise MOFs, predict their performance and study molecular level phenomena. In contrast, hardly any simulation studies exist about the formation of MOFs, their crystal growth or the formation of thin films. Yet such studies are essential for understanding the fundamentals which will ultimately lead to a better control of the material properties. Building on my expertise in molecular modelling including the development of methods to model the synthesis of porous solids, we will develop new methods to study:

1. the self-assembly process of MOFs under synthesis conditions
2. the formation of nanoparticles
3. the integration of MOF nanoparticles into composite materials and the self-assembly into extended structures
4. the layer-by-layer growth of thin films

At the end of the project we will have transformed our understanding of how MOFs form at a variety of length scales and opened up new research directions for the targeted synthesis of MOFs fit for applications.

Schlüsselbegriffe

Gastgebende Einrichtung

UNIVERSITY OF BATH
Netto-EU-Beitrag
€ 1 738 715,00
Adresse
CLAVERTON DOWN
BA2 7AY Bath
Vereinigtes Königreich

Auf der Karte ansehen

Region
South West (England) Gloucestershire, Wiltshire and Bristol/Bath area Bath and North East Somerset, North Somerset and South Gloucestershire
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 738 715,00

Begünstigte (1)