Descripción del proyecto
Simulación molecular del autoensamblaje de marcos organometálicos
Los marcos organometálicos (MOF, por sus siglas en inglés) son una clase relativamente nueva de materiales cristalinos formados por clústeres o nodos metálicos inorgánicos unidos por ligandos orgánicos en un proceso de autoensamblaje. Su elevada porosidad y su superficie extremadamente alta en relación con el volumen total los hacen especialmente adecuados para aplicaciones como la separación y el almacenamiento de gases, la detección y la catálisis. Existen posibilidades prácticamente ilimitadas de combinaciones metal-ligando que permiten adaptar las interacciones hospedador-huésped, así como la posibilidad de formarlas como nanopartículas, compuestos o películas delgadas. Para explotarlos plenamente se necesita una mayor comprensión y, por tanto, un mayor control de sus procesos de autoensamblaje. En el proyecto GROWMOF, financiado con fondos europeos, se crearán nuevos métodos de simulación molecular para caracterizar la formación de marcos organometálicos a diversas escalas de longitud con el fin de satisfacer esta necesidad.
Objetivo
Metal-organic frameworks (MOFs) constitute one of the most exciting developments in recent nanoporous material science. Synthesised in a self-assembly process from metal corners and organic linkers, a near infinite number of materials can be created by combining different building blocks allowing to fine tune host guest interactions. MOFs are therefore considered promising materials for many applications such as gas separation, drug delivery or sensors for which MOFs in form of nanoparticles, composite materials or thin films are required. For MOFs to realise their potential and to become more than just promising materials, a degree of predictability in the synthesis and the properties of the resulting material is paramount and the full multiscale pathway from molecular assembly to crystal growth and thin film formation needs to be better understood.
Molecular simulation has greatly contributed to developing adsorption applications of MOFs and now works hand-in-hand with experimental methods to characterise MOFs, predict their performance and study molecular level phenomena. In contrast, hardly any simulation studies exist about the formation of MOFs, their crystal growth or the formation of thin films. Yet such studies are essential for understanding the fundamentals which will ultimately lead to a better control of the material properties. Building on my expertise in molecular modelling including the development of methods to model the synthesis of porous solids, we will develop new methods to study:
1. the self-assembly process of MOFs under synthesis conditions
2. the formation of nanoparticles
3. the integration of MOF nanoparticles into composite materials and the self-assembly into extended structures
4. the layer-by-layer growth of thin films
At the end of the project we will have transformed our understanding of how MOFs form at a variety of length scales and opened up new research directions for the targeted synthesis of MOFs fit for applications.
Ámbito científico
- engineering and technologymaterials engineeringcrystals
- engineering and technologymaterials engineeringcoating and films
- natural sciencesphysical sciencesmolecular and chemical physics
- engineering and technologynanotechnologynano-materials
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
Palabras clave
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
BA2 7AY Bath
Reino Unido