Descripción del proyecto
Metamateriales bidimensionales y semiconductores ópticamente activos para dispositivos nanofotónicos ultrafinos
La nanofotónica aprovecha las interacciones a nanoescala entre la luz y la materia para crear materiales artificiales con propiedades electromagnéticas que no existen en la naturaleza. Estos metamateriales exóticos, así como su potencial para controlar la luz en el régimen de sublongitud de onda, posibilitan grandes avances en campos como el almacenamiento y procesamiento de la información, la detección y la obtención de imágenes. El equipo del proyecto FLATLIGHT, financiado con fondos europeos, ampliará sus exclusivos metamateriales bidimensionales (metasuperficies), que utilizan nanoestructuras metálicas y funcionan en las longitudes de onda del infrarrojo a la luz visible, las más importantes para muchas aplicaciones, y los combinará con semiconductores ópticamente activos. Se utilizarán para crear dispositivos planos ultrafinos reconfigurables para modular la luz a altas frecuencias y controlar los gases polaritones en metasistemas de estado sólido.
Objetivo
For the last 15 years, optics has undergone a remarkable evolution towards ever decreasing sizes, better integration in complex systems, and more compact devices readily available to mass markets. Whereas traditional optics is at the centimeter scale, newly developed techniques use nanoscale objects to control, guide, and focus light. From the capability to shape metallic and dielectric nanostructures has emerged the field of nanophotonics.
Advances in nanophotonics offer the possibility to control the material’s optical properties to create artificial materials with electromagnetic properties not found in nature. Man-made 3D metamaterials have interesting fundamental aspects and present many advantages with respect to conventional devices. Unexpected effects have led to the development of interesting applications like high resolution lenses and cloaking devices.
Inspired by this new technology, we have developed new 2D metamaterials. Our flat metamaterials (metasurfaces) are much simpler to manufacture than their 3D counterparts. By depositing a set of nanostructures at an interface, we can immediately control the light properties; unlike refractive optical components, the wavefront is modified without propagation. As of today, these interfaces are created using metallic nanostructures and work in the infrared. In this ERC, we plan to extend the concept of optical metasurfaces in the visible which is the most important wavelength range for applications. By combining with optically active semiconductors such as InGaAlN, we will add optical gain and modulation capability to the system to create new, efficient optoelectronic devices. The response of the metasurfaces is tunable by changing the environment surrounding the nanostructures. We will use this property to create ultrathin reconfigurable flat devices. Metasurfaces will be integrated with AlN/GaN to modulate light at high frequencies and further exploited to control polariton gases in solid state metasystems.
Ámbito científico
- engineering and technologymaterials engineeringcrystals
- engineering and technologynanotechnologynano-processes
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- engineering and technologynanotechnologynanophotonics
- natural sciencesphysical sciencesopticslaser physics
Palabras clave
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
75794 Paris
Francia