Description du projet
Des métamatériaux 2D et des semi-conducteurs optiquement actifs pour des dispositifs nanophotoniques ultraminces
La nanophotonique exploite les interactions à l’échelle nanométrique entre la lumière et la matière pour créer des matériaux artificiels dotés de propriétés électromagnétiques qui n’existent pas à l’état naturel. Ces métamatériaux exotiques et leur capacité à contrôler la lumière dans les sub-longueurs d’onde inaugurent des percées dans des domaines tels que le stockage et le traitement de l’information, la détection et l’imagerie. Le projet FLATLIGHT, financé par l’UE, étendra leurs métamatériaux 2D uniques (métasurfaces), qui exploitent des nanostructures métalliques et fonctionnent dans les longueurs d’onde de l’infrarouge à la lumière visible, les plus importantes pour de nombreuses applications, et les combinera avec des semi-conducteurs optiquement actifs. Ils serviront à créer des dispositifs plats reconfigurables ultraminces permettant de moduler la lumière à haute fréquence et de contrôler les gaz polariton dans les métasystèmes à l’état solide.
Objectif
For the last 15 years, optics has undergone a remarkable evolution towards ever decreasing sizes, better integration in complex systems, and more compact devices readily available to mass markets. Whereas traditional optics is at the centimeter scale, newly developed techniques use nanoscale objects to control, guide, and focus light. From the capability to shape metallic and dielectric nanostructures has emerged the field of nanophotonics.
Advances in nanophotonics offer the possibility to control the material’s optical properties to create artificial materials with electromagnetic properties not found in nature. Man-made 3D metamaterials have interesting fundamental aspects and present many advantages with respect to conventional devices. Unexpected effects have led to the development of interesting applications like high resolution lenses and cloaking devices.
Inspired by this new technology, we have developed new 2D metamaterials. Our flat metamaterials (metasurfaces) are much simpler to manufacture than their 3D counterparts. By depositing a set of nanostructures at an interface, we can immediately control the light properties; unlike refractive optical components, the wavefront is modified without propagation. As of today, these interfaces are created using metallic nanostructures and work in the infrared. In this ERC, we plan to extend the concept of optical metasurfaces in the visible which is the most important wavelength range for applications. By combining with optically active semiconductors such as InGaAlN, we will add optical gain and modulation capability to the system to create new, efficient optoelectronic devices. The response of the metasurfaces is tunable by changing the environment surrounding the nanostructures. We will use this property to create ultrathin reconfigurable flat devices. Metasurfaces will be integrated with AlN/GaN to modulate light at high frequencies and further exploited to control polariton gases in solid state metasystems.
Champ scientifique
- engineering and technologymaterials engineeringcrystals
- engineering and technologynanotechnologynano-processes
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- engineering and technologynanotechnologynanophotonics
- natural sciencesphysical sciencesopticslaser physics
Mots‑clés
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
75794 Paris
France