Projektbeschreibung
Erstellung eines benutzerfreundlichen FAIRiCUBE HUB
Gemäß dem Programm „Digitales Europa“ der Europäischen Kommission bezieht sich ein Datenraum auf eine Dateninfrastruktur mit maßgeschneiderten Verwaltungsmechanismen, die einen sicheren und grenzüberschreitenden Zugang zu wichtigen Datensätzen in dem betreffenden Themenbereich unterstützen. Das EU-finanzierte Projekt FAIRiCUBE zielt darauf ab, das Potenzial von Umwelt-, Biodiversitäts- und Klimadaten durch spezielle europäische Datenräume freizusetzen. Zu diesem Zweck wird im Rahmen des Projekts FAIRiCUBE HUB eine übergreifende Plattform und ein Rahmenwerk für die Aufnahme, Bereitstellung, Analyse, Verarbeitung und Verbreitung von Daten geschaffen. Ein Schwerpunkt wird die Entwicklung von Werkzeugen sein, die Nutzenden, die mit der Welt der Erdbeobachtung und des maschinellen Lernens nicht vertraut sind, die Möglichkeit bieten, die Anforderungen und Kosten der von ihnen gewünschten Analysen einzuschätzen.
Ziel
The core objective of FAIRiCUBE is to enable players from beyond classic Earth Observation (EO) domains to provide, access, process, and share gridded data and algorithms in a FAIR and TRUSTable manner. To reach this objective, we propose creating the FAIRiCUBE HUB, a crosscutting platform and framework for data ingestion, provision, analysis, processing, and dissemination, to unleash the potential of environmental, biodiversity and climate data through dedicated European data spaces. Within this project, TRL 7 will be attained, together with the necessary governance aspects to assure continued maintenance of the FAIRiCUBE HUB beyond the project lifespan.
This project’s goal is to leverage the power of Machine Learning (ML) operating on multi-thematic datacubes for a broader range of governance and research institutions from diverse fields, who at present cannot easily access and utilize these potent resources. Selected use cases will illustrate how data-driven projects can benefit from cube formats, infrastructure, and computational benefits. They will guide us in creating a user-friendly FAIRiCUBE HUB, which is tightly integrated to the common European data spaces, providing relevant stakeholders an overview of both data and processing modules readily available to be applied to these data sources. Tools enabling users not intimately familiar with the worlds of EO and ML to scope the requirements and costs of their desired analyses will be implemented, easing uptake of these resources by a broader community. The FAIR sharing of results with the community will be fostered by providing easy to use tools and workflows directly in the FAIRiCUBE HUB.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Schlüsselbegriffe
Programm/Programme
Aufforderung zur Vorschlagseinreichung
HORIZON-CL6-2021-GOVERNANCE-01
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
HORIZON-IA - HORIZON Innovation ActionsKoordinator
2027 Kjeller
Norwegen