An Expert Panel Workshop was convened on 15-19 May 2006 in Granada to discuss the options for incorporating knowledge on low-dose and mixture effects in testing strategies and regulatory efforts. Invited attendees represented national regulatory agencies, NGOs and research organisations. A representative from Schering AG, Berlin, Germany was contacted and invited, but his company was uninterested and did not grant permission to attend.
The workshop itself was very productive. The panelists worked on a stepped procedure for mixtures regulation and risk assessment. First considerations were to which chemicals should be included for endocrine disrupter chemical (EDC) mixture regulation, and a decision on this issue depends on an answer to the question as to how to define what an EDC should be. It was felt that it is important to distinguish 'mode of action' from 'effects'. 'Endocrine disruption' is a mode of action relevant to developmental and reproductive toxicity, but not an effect. Instead, this mode of action can give rise to a plethora of different effects. Mechanistic considerations open the way for grouping EDCs according to test results in 'mode of action' screens, as with the customary classification into 'estrogens', '(anti)androgens', 'thyroid-actives' (EAT). However, the panelists recognised that this classification, with its emphasis on steroid and thyroid receptor interactions, does not capture all known endocrine effects and therefore suggested to include as additional category 'others', thus: EATO.
The 'mode of action' screen classification leads into a dilemma: The EATO grouping is of limited relevance for risk assessment, because the predictive value of such screening outcomes for the occurrence of (adverse) effects is questionable. For example, not all androgen receptor antagonists produce responses typical of disruption of male sexual development (such as retained nipples, altered anogenital distance etc). For estrogens, in vivo effect models capturing the conditions of concern in the human (e.g. breast cancer) are not available. Furthermore, screens are imperfect, as exemplified by the case of certain phthalate esters which disrupt male sexual development by interfering with steroid synthesis, and not by receptor interactions, yet many anti-androgen screening tools do not detect these phthalates. On the other hand, a grouping of EDCs in a phenomenological fashion according to effects is not currently possible, because too few chemicals have been tested in relevant toxicity studies, or because the appropriate tests are not yet available. This situation is not likely to change in the foreseeable future. An all-encompassing solution is not on the horizon, however, for specific chemicals, effects and exposure scenarios it is now well established that EDCs can act in an additive fashion. Therefore, there are possibilities for utilising existing knowledge and data for making progress with risk assessment and regulation that takes account of mixture effects.
Several examples and exposure settings were discussed including:
- vitellogenin induction in fish from cumulative exposure to estrogenic chemicals (so-called mixture maps);
- retained nipples and changes in anogenital distances in the rat;
- Spiggin induction in the stickleback and
- internal exposure to estrogens in women.
Conclusions were that concentration addition is a powerful risk assessment tool for cumulative exposure in these examples.
The panelists highlighted that knowledge about realistic exposure scenarios for EDC mixtures is fragmentary. In most cases, we simply do not know enough about the identity of EDC that co-occur in food, environmental matrices or human tissues, let alone their levels. This presents a formidable bottleneck to rational risk assessment for combined exposures - some participants even thought that this lack of data is the obstacle to making progress. Thus, there is a need to deal with knowledge gaps by making informed assumptions, and a step-wise approach, depending on the quality of data available, was discussed.
The following situations could be distinguished:
- In some cases, sufficient knowledge about the identity and levels of relevant EDCs is available - in these situations dose addition can be applied;
- More often, however, there is uncertainty as to whether specific EDCs are able to induce the effects under consideration, but there may be some reason for concern. In these cases, a 'mixture assessment factor' could be applied for such EDC, so as to enable risk assessors to proceed and
- If no data or information is available, it was considered to apply a default mixture assessment factor, making certain assumptions about the likely number of chemicals in the mixture.