A distributed, master-less communication system that can operate on wired and wireless links has been developed. It is able to do a simple peer-to-peer connection but can as well interconnect a fleet of (micro) UAVs. Communication is realized using a distributed shared memory approach. The coherency is kept by a real-time aware protocol that uses traffic shaping and dynamic routing.
The communication system has been developed for a special purpose:
Communication is essential for unmanned aerial systems (UAVs). Micro UAVs are especially requiring highly efficient communications systems since their capabilities in payload, energy and processing power are very limited. Still, the communications system (CS) should be very flexible in terms of interconnectivity between heterogeneous systems and in dynamic environments.
The communication system has been developed, implemented and tested during the project Real-time coordination and control of multiple heterogeneous unmanned aerial vehicles (COMETS). During this project, a variable number of unmanned aerial vehicles (UAVs) had to exchange information.
These UAVs build the flying segment (FS). On the ground, the fleet is supported by a number of computers. They build the ground segment (GS). Since vital data is transported via the communication links in and between the FS and the GS, the CS had to meet real-time constraints and provide bandwidth assignment to allow prioritization of important versus unimportant data.
The network topology especially of the FS may not be fixed, which imposes the need for a dynamic rerouting mechanism. To gain redundancy, support for communication over multiple physical links was included. Because of the heterogeneous system setup, the CS had to be highly portable to different operating systems and light enough to run on a 16-bit microcontroller.