Descripción del proyecto
Tecnologías de aprendizaje automático personalizadas para modelos meteorológicos y climáticos
Dado que el cambio climático constituye la mayor amenaza a la que se enfrenta el ser humano moderno, es necesario desarrollar las herramientas necesarias para prepararse para sus posibles efectos futuros. El aprendizaje automático puede ayudar a mejorar los modelos meteorológicos y climáticos. Con esta idea, el objetivo del proyecto financiado con fondos europeos MAELSTROM es mejorar la arquitectura informática europea para ayudar a evaluar las repercusiones climáticas futuras. En concreto, se mejorará el diseño de sistemas informáticos para conseguir un rendimiento óptimo de las aplicaciones y una mayor eficiencia energética, un marco de «software» para optimizar la usabilidad y la eficiencia formativa para el aprendizaje automático a escala, y aplicaciones de aprendizaje automático a gran escala para el ámbito de la ciencia meteorológica y climática. Se diseñarán sistemas informáticos personalizados y optimizados para las necesidades de las aplicaciones con el fin de reforzar la cartera de productos informáticos de alto rendimiento de Europa.
Objetivo
To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke compute system designs for optimal application performance and energy efficiency, a software framework to optimise usability and training efficiency for machine learning at scale, and large-scale machine learning applications for the domain of weather and climate science.
The MAELSTROM compute system designs will benchmark the applications across a range of computing systems regarding energy consumption, time-to-solution, numerical precision and solution accuracy. Customised compute systems will be designed that are optimised for application needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware developments, driven by general machine learning applications, toward needs of weather and climate applications.
The MAELSTROM software framework will enable scientists to apply and compare machine learning tools and libraries efficiently across a wide range of computer systems. A user interface will link application developers with compute system designers, and automated benchmarking and error detection of machine learning solutions will be performed during the development phase. Tools will be published as open source.
The MAELSTROM machine learning applications will cover all important components of the workflow of weather and climate predictions including the processing of observations, the assimilation of observations to generate initial and reference conditions, model simulations, as well as post-processing of model data and the development of forecast products. For each application, benchmark datasets with up to 10 terabytes of data will be published online for training and machine learning tool-developments at the scale of the fastest supercomputers in the world. MAELSTROM machine learning solutions will serve as blueprint for a wide range of machine learning applications on supercomputers in the future.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorology
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatology
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwaresupercomputers
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
- natural sciencescomputer and information sciencessoftwaresoftware applications
Palabras clave
Programa(s)
Régimen de financiación
RIA - Research and Innovation actionCoordinador
RG2 9AX Reading
Reino Unido