Projektbeschreibung
Maßgeschneiderte Lösungen auf der Grundlage des maschinellen Lernens für Wetter- und Klimamodelle
Da der Klimawandel als die größte Bedrohung gilt, denen die moderne Menschheit je ausgesetzt war, müssen Instrumente entwickelt werden, mit denen sie sich auf mögliche künftige Auswirkungen vorbereiten kann. Wetter- und Klimamodelle könnten sich mit maschinellem Lernen verbessern lassen. Daher möchte das EU-finanzierte Projekt MAELSTROM die europäische Computerarchitektur zur Einschätzung künftiger klimatischer Folgen verbessern. Konkret wird es Computersysteme für eine optimale Anwendungsleistung und Energieeffizienz, ein Software-Framework zur Verbesserung der Bedienbarkeit und Trainingseffizienz bei umfangreichem maschinellem Lernen und umfassende Anwendungen des maschinellen Lernens für die Wetter- und Klimawissenschaft vorantreiben. Es werden Computersysteme entwickelt, die für die Anwendungsbedürfnisse optimiert sind und das europäische Angebot im Bereich Hochleistungsrechnen ausbauen sollen.
Ziel
To develop Europe’s computer architecture of the future, MAELSTROM will co-design bespoke compute system designs for optimal application performance and energy efficiency, a software framework to optimise usability and training efficiency for machine learning at scale, and large-scale machine learning applications for the domain of weather and climate science.
The MAELSTROM compute system designs will benchmark the applications across a range of computing systems regarding energy consumption, time-to-solution, numerical precision and solution accuracy. Customised compute systems will be designed that are optimised for application needs to strengthen Europe’s high-performance computing portfolio and to pull recent hardware developments, driven by general machine learning applications, toward needs of weather and climate applications.
The MAELSTROM software framework will enable scientists to apply and compare machine learning tools and libraries efficiently across a wide range of computer systems. A user interface will link application developers with compute system designers, and automated benchmarking and error detection of machine learning solutions will be performed during the development phase. Tools will be published as open source.
The MAELSTROM machine learning applications will cover all important components of the workflow of weather and climate predictions including the processing of observations, the assimilation of observations to generate initial and reference conditions, model simulations, as well as post-processing of model data and the development of forecast products. For each application, benchmark datasets with up to 10 terabytes of data will be published online for training and machine learning tool-developments at the scale of the fastest supercomputers in the world. MAELSTROM machine learning solutions will serve as blueprint for a wide range of machine learning applications on supercomputers in the future.
Wissenschaftliches Gebiet
- natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorology
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatology
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwaresupercomputers
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
- natural sciencescomputer and information sciencessoftwaresoftware applications
Schlüsselbegriffe
Programm/Programme
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
RIA - Research and Innovation actionKoordinator
RG2 9AX Reading
Vereinigtes Königreich