Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Combining Simulation Models and Big Data Analytics for ATM Performance Analysis

Projektbeschreibung

Bessere Simulationen von Praktiken des Flugverkehrsmanagements für eine schlüssige Bewertung

Da die Zahl der Flugzeuge in der Luft und der am Boden rollenden Flugzeuge weiter zunimmt, wird das Flugverkehrsmanagement immer anspruchsvoller. Die 1955 als zwischenstaatliche, gesamteuropäische Organisation gegründete Europäische Zivilluftfahrt-Konferenz fördert unter ihren Mitgliedstaaten Maßnahmen und Praktiken, welche die Sicherheit, Effizienz und Nachhaltigkeit des europäischen Luftverkehrssystems unterstützen. Das EU-finanzierte Projekt SIMBAD wird die effiziente und zuverlässige Bewertung des Erfolgs dieser Maßnahmen und Praktiken durch die Entwicklung neuer Ansätze zur Leistungsmodellierung vorantreiben, die auf der Kombination von maschinellen Lerntechniken und der Mikrosimulation des Luftverkehrs basieren.

Ziel

The development of performance modelling methodologies able translate new ATM concepts and technologies into their impact on high-level, system wide KPIs has been a long-time objective of the ATM research community. Bottom-up, microsimulation models are often the only feasible approach to address this problem in a reliable manner. However, the practical application of large-scale simulation models to strategic ATM performance assessment is often hindered by their computational complexity. The goal of SIMBAD is to develop and evaluate a set of machine learning approaches aimed at providing state of-the-art ATM microsimulation models with the level of reliability, tractability and interpretability required to effectively support performance evaluation at ECAC level. The specific objectives of the project are the following:
1. Explore the use of machine learning techniques for the estimation of hidden variables from historical air traffic data, with particular focus on airspace users’ preferences and behaviour, in order to enable a more robust calibration of air traffic microsimulation models.
2. Develop new machine learning algorithms for the classification of traffic patterns that enable the selection of a sufficiently representative set of simulation scenarios allowing a comprehensive assessment of new ATM concepts and solutions.
3. Investigate the use of active learning metamodelling to facilitate a more efficient exploration of the input output space of complex simulation models through the development of more parsimonious performance metamodels, i.e. analytical input/output functions that approximate the results of a more complex function defined by the microsimulation models.
4. Demonstrate and evaluate the newly developed methods and tools through a set of case studies in which the proposed techniques will be integrated with existing, state-of-the-art ATM simulation tools and used to analyse a variety of ATM performance problems.

Koordinator

NOMMON SOLUTIONS AND TECHNOLOGIES SL
Netto-EU-Beitrag
€ 314 312,50
Adresse
PLAZA CARLOS TRIAS BERTRAN 4 2 PLANTA
28020 Madrid
Spanien

Auf der Karte ansehen

KMU

Die Organisation definierte sich zum Zeitpunkt der Unterzeichnung der Finanzhilfevereinbarung selbst als KMU (Kleine und mittlere Unternehmen).

Ja
Region
Comunidad de Madrid Comunidad de Madrid Madrid
Aktivitätstyp
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Gesamtkosten
€ 314 312,50

Beteiligte (4)