Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Combining Simulation Models and Big Data Analytics for ATM Performance Analysis

Descrizione del progetto

Migliori simulazioni delle pratiche di gestione del traffico aereo favoriscono una valutazione conclusiva

Con la continua crescita del numero di aerei nei cieli e di quelli che rullano a terra, la gestione del traffico aereo diventa sempre più impegnativa. La Conferenza europea dell’aviazione civile, fondata nel 1955 come organizzazione intergovernativa e paneuropea, promuove politiche e pratiche tra i suoi Stati membri a sostegno della sicurezza, dell’efficienza e della sostenibilità del sistema di trasporto aereo europeo. Il progetto SIMBAD, finanziato dall’UE, farà progredire la valutazione efficiente e affidabile delle prestazioni di queste politiche e pratiche sviluppando nuovi approcci di modellizzazione delle prestazioni basati sulla combinazione di tecniche di apprendimento automatico e microsimulazione del traffico aereo.

Obiettivo

The development of performance modelling methodologies able translate new ATM concepts and technologies into their impact on high-level, system wide KPIs has been a long-time objective of the ATM research community. Bottom-up, microsimulation models are often the only feasible approach to address this problem in a reliable manner. However, the practical application of large-scale simulation models to strategic ATM performance assessment is often hindered by their computational complexity. The goal of SIMBAD is to develop and evaluate a set of machine learning approaches aimed at providing state of-the-art ATM microsimulation models with the level of reliability, tractability and interpretability required to effectively support performance evaluation at ECAC level. The specific objectives of the project are the following:
1. Explore the use of machine learning techniques for the estimation of hidden variables from historical air traffic data, with particular focus on airspace users’ preferences and behaviour, in order to enable a more robust calibration of air traffic microsimulation models.
2. Develop new machine learning algorithms for the classification of traffic patterns that enable the selection of a sufficiently representative set of simulation scenarios allowing a comprehensive assessment of new ATM concepts and solutions.
3. Investigate the use of active learning metamodelling to facilitate a more efficient exploration of the input output space of complex simulation models through the development of more parsimonious performance metamodels, i.e. analytical input/output functions that approximate the results of a more complex function defined by the microsimulation models.
4. Demonstrate and evaluate the newly developed methods and tools through a set of case studies in which the proposed techniques will be integrated with existing, state-of-the-art ATM simulation tools and used to analyse a variety of ATM performance problems.

Meccanismo di finanziamento

RIA - Research and Innovation action

Coordinatore

NOMMON SOLUTIONS AND TECHNOLOGIES SL
Contribution nette de l'UE
€ 314 312,50
Indirizzo
PLAZA CARLOS TRIAS BERTRAN 4 2 PLANTA
28020 Madrid
Spagna

Mostra sulla mappa

PMI

L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.

Regione
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo di attività
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Collegamenti
Costo totale
€ 314 312,50

Partecipanti (4)