Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Artificial Intelligence Solutions to Meteo-Based DCB Imbalances for Network Operations Planning

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

ISOBAR operational framework

This deliverable define the target operational framework (requirements, scenarios and use cases) for the evaluation of effectiveness of ISOBAR solution.

Final Project Results Report

This deliverable provides the ISOBAR findings which will include the description of final ISOBAR Solution a summary of proposed concepts and engines and the results with evidence of benefits and operational feasibility Furthermore technological risk and costs are analysed and regulatory implications are proposed together with a preliminary plan for the next RD phases

Multi-model probability of convection on a set of use cases

This deliverable provides probability of convection for a set of use cases focusing on the local and regional ATFCM needs

Applicable PF and evaluation reference

This deliverable provides a description of the ATFCM Performance framework and the reference for evaluation corresponding to the identified use cases

ML demand prediction model

This deliverable describes a function capable of estimating the demand fluctuations due to convective weather The deliverable will be updated at T016 to integrate further refinement of the model

Report on ISOBAR Evaluation and roadmap for ISOBAR B2B service

This deliverable describes the performance of ISOBAR solution against the baseline reference It includes the execution of the simulation campaign which covers the execution of ISOBAR solution service prototype to produce mitigation strategies tailored to scenarios for the selected use cases The report will elaborate recommendations for the next RD steps defining a highlevel roadmap for further development of ISOBAR service and integration in NM B2B services

Enhanced ATFCM Process and Service Requirements

Integrated operational flow of ISOBAR processes and models that will guide the developments in WP2 WP3 and WP4 The deliverable will be updated at T022 to integrate the results of technical WPs including feedback from the evaluation of effectiveness and consolidate them into an enhanced ATFCM process incorporating convective weather information The deliverable update will also include final requirements from T13

ISOBAR prototype and HMI showcase

This deliverable provides an experimental prototype with all ISOBAR modules integrated in and usable for evaluation through simulations The final HMI would be standalone designed to understand the concept and ease the dissemination of the project

Enhanced DCB algorithm with reinforcement learning

This deliverable provides an optimisation model for an enhanced DCB process The optimal coefficients will be computed using reinforcement learning based on the feedback in tactical ATFCM including an assessment of the relevant KPIs for each set of DCB solutions

Storm predictive model

This deliverable addresses the development of an enhanced convection indicator capable of identifying locationseverity and time window of storms

Hotspot detection library, based on demand and capacity characterisation

This deliverable will develop a library to identify hotspots in the airspace system given the demand and capacity profiles developed and refined

Pubblicazioni

Integrated Frameworks of Unsupervised, Supervised and Reinforcement Learning for Solving Air Traffic Flow Management Problem

Autori: C. Huang and Y. Xu
Pubblicato in: 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), 2021, Pagina/e pp. 1-10
Editore: IEEE
DOI: 10.1109/dasc52595.2021.9594397

Multi-Agent Deep Reinforcement Learning for Solving Large-scale Air Traffic Flow Management Problem: A Time-Step Sequential Decision Approach

Autori: Y. Tang and Y. Xu
Pubblicato in: 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), 2021, Pagina/e pp. 1-10
Editore: IEEE
DOI: 10.1109/dasc52595.2021.9594329

Simulated-Annealing Hyper-Heuristic for Demand-Capacity Balancing in Air Traffic Flow Management

Autori: Khassiba, A., and Delahaye, D.
Pubblicato in: 12th SESAR Innovation Days, Numero 5-8 December SIDs 2022, 2022
Editore: SESAR JU

Predicting Convective Storm Characteristics using Machine Learning from Hi-Resolution NWP Forecasts

Autori: Aniel Jardines, Manuel Soler, Javier García-Heras, Matteo Ponzano, Laure Raynaud, Lucie Rottner, Juan Simarro, and Florenci Rey
Pubblicato in: Conference Paper published at the General Assembly of the European Geoscience Union (EGU’21), Numero 19–30 Apr 2021, EGU21-7516, 2021
Editore: EGU General Assembly 2021
DOI: 10.5194/egusphere-egu21-7516

Optimal Air Traffic Flow Management Regulations Scheme with Adaptive Large Neighbourhood Search

Autori: Ramón Dalmau, Gilles Gawinowski & Camille Anoraud
Pubblicato in: 12th SESAR Innovation Days, Numero 5-8 December SIDs 2022, 2022
Editore: SESAR JU

Convection indicator for pre-tactical air traffic flow management using neural networks

Autori: Aniel Jardines; Manuel Soler; Alejandro Cervantes; Javier García-Heras; Juan Simarro
Pubblicato in: Machine Learning with Applications, Numero Machine Learning with Applications 5 (2021) 100053 (https://www.sciencedirect.com/science/article/pii/S2666827021000256?via%3Dihub), 2021, ISSN 2666-8270
Editore: Elsevier
DOI: 10.1016/j.mlwa.2021.100053

Locally generalised multi-agent reinforcement learning for demand and capacity balancing with customised neural networks

Autori: Yutong Chen; Minghua Hu; Yan Xu; Lei Yang
Pubblicato in: Chinese Journal of Aeronautics, Numero 24 January 2023, 2023, ISSN 1000-9361
Editore: Press of Acta Aeronautica et Astronautica Sinica
DOI: 10.1016/j.cja.2023.01.010

Comparison of various temporal air traffic flow management models in critical scenarios

Autori: Ramon Dalmau; Gilles Gawinowski; Camille Anoraud
Pubblicato in: Journal of Air Transport Management, Numero October 2022, 2022, ISSN 1873-2089
Editore: Elsevier
DOI: 10.1016/j.jairtraman.2022.102284

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile