Descrizione del progetto
Monitoraggio diagnostico per mantenere le mucche in salute
Le mucche da latte vengono colpite da varie malattie associate all’allattamento e alla gravidanza, che risultano fatali. Si stima che la mortalità delle mucche a causa di queste malattie si attesti tra il 20 % e il 40 % del bestiame, causando enormi perdite per il settore e ulteriori danni ambientali. Le soluzioni esistenti affrontano solo uno o due aspetti del benessere animale e al contempo dipendono da alcuni parametri non sempre affidabili. Il progetto rumicon, finanziato dall’UE, sta sviluppando la prima soluzione olistica di monitoraggio diagnostico, che include una vasta gamma di parametri diretti e indiretti a copertura di tutti gli aspetti relativi al benessere delle mucche. La soluzione è composta da un sensore per il bolo integrato nello stomaco delle mucche all’altezza del rumine, che invia dati a un sistema basato sul cloud per la successiva elaborazione con apprendimento automatico e algoritmi.
Obiettivo
High performance dairy cows have a reduced lifespan (from 5.4 years on average to 20) and high mortality, due to the number of diseases associated to pregnancy/lactation. This represents a major environmental and economic issue for dairy farmers: only in Germany, around €2.1 billion are lost each year due to forced cattle rejections.
Holistic monitoring systems are greatly needed to improve cow’s welbeing and minimize cattle forced rejection rates (currently 20-40% of the livestock). However, current monitoring solutions focus only on one or two aspects of cow’s wellbeing (oestrus, calving, health status or feeding), and rely on just a few parameters which may not be entirely reliable (e.g. rumen pH measurements).
rumicon is the first holistic and predictive monitoring system for dairy cows. Integrated into the rumen stomach of heifers, our bolus sensor measures a great variety of parameters (both direct and indirect), including rumen’s motility - the most accurate health indicator in ruminants. In this way, our system is the first one to monitor ALL aspects of cow’s wellbeing with a single device. The gathered data is sent to a cloud base computing system, which processes it with Machine Learning algorithms and creates charts and tables. Thus, all information is easily accessible, and alarms/notifications are directly sent to farm managers and veterinarians when needed, for them to take action before the problem affects milk production. In this sense, by using our system, farmers will be able to extend their herd’s life expectancy by 20-30% (up to 7 years), reducing cattle forced departures in 25%.
Moreover, for our company, dropnostix gmbh, rumicon will be the core pillar of our business, with which we aim to reach about 1,600 large dairy farms and revenues of €17.13 million in the first 5 years of commercialization. For this purpose, we will rely on a solid value chain within the European dairy industry, including key institutions and cattle associations.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- agricultural sciencesanimal and dairy sciencedairy
- medical and health sciencesclinical medicineobstetrics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- agricultural sciencesanimal and dairy sciencedomestic animalsanimal husbandry
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
Programma(i)
Argomento(i)
Invito a presentare proposte
Vedi altri progetti per questo bandoBando secondario
H2020-SMEInst-2018-2020-1
Meccanismo di finanziamento
SME-1 - SME instrument phase 1Coordinatore
14471 POTSDAM
Germania
L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.