Description du projet
Biomarqueurs biomécaniques pour prédire la réponse en immunothérapie
L’immunothérapie anticancéreuse provoque dans certains cas des toxicités sévères, ce qui souligne l’importance de biomarqueurs qui peuvent prédire à temps les cancers qui ne répondent pas. Pour répondre à cela, le projet Immuno Predictor, financé par l’UE, porte sur l’hypothèse que certains aspects biomécaniques du microenvironnement de la tumeur, tels que la rigidité de la tumeur, la tension solide, la perfusion ou l’hypoxie, sont responsables de la résistance à l’immunothérapie. L’administration généralisée de l’immunothérapie nécessite un système vasculaire bien perfusé, ce qui n’est pas souvent le cas pour les tumeurs solides et hypoxiques. Par utilisation de méthodes appliquées en clinique et basées sur les ultrasons et la modélisation biomécanique informatique sur des tumeurs murines et des patients atteints de cancer, les scientifiques du projet Immuno-Predictor identifieront les biomarqueurs biomécaniques pour prédire le résultat de l’immunothérapie.
Objectif
Immunotherapy has revolutionized the treatment of multiple cancers and has already become a standard of care for some tumor types. However, a majority of patients do not benefit from current immunotherapeutics and many develop severe toxicities. Therefore, the identification of biomarkers to classify patients as likely responders or nonresponders to immunotherapy is a timely and of tremendous impact task. My hypothesis is that biomechanical aspects of the tumor microenvironment mediate resistance to immunotherapy. Specifically, many tumors stiffen as they grow and also, tumor growth within the host tissue generates mechanical forces, termed solid stress. Tumor stiffening and solid stress are distinct mechanical abnormalities that compress intratumoral blood vessels, causing hypo-perfusion and hypoxia. Systemic administration of immunotherapeutics requires a well-perfused vasculature, whereas hypo-perfusion and hypoxia promote immunosuppression, helping cancer cells to evade immune responses. The objective of the proposed research is the identification of novel Mechanical Biomarkers related to tumor stiffness, solid stress, perfusion and hypoxia for prediction of immunotherapy. Tumor-bearing mice will be developed and treated with immunotherapeutic drugs and clinically used methods will be combined with computational biomechanical modeling for measuring the Mechanical Biomarkers, making the research transferable to the clinic. The biomarkers will be benchmarked against tumor normalization strategies aiming to restore/normalize mechanical abnormalities and optimize immunotherapy. Finally, the clinical utility of the selected biomarkers will be evaluated in human tumors. Only few tumor-specific biomarkers are used in the clinic - based mainly on genomic analysis. This project is expected to lead to the first biomarkers for immunotherapy prediction exploiting tumor mechanics.
Champ scientifique
Programme(s)
Régime de financement
ERC-COG - Consolidator GrantInstitution d’accueil
1678 Nicosia
Chypre